Zephyrnet Logo

The genome editing revolution

Date:

    • Judson H.F.
    • Gratzer W.

    The eighth day of creation.

    Nature. 1997; 386: 344

    • Avery O.
    • et al.

    Studies on the chemical nature of the substance causing transformation of the pneumococcal types. Induction by a desoxyribonucleic acid fraction isolated from pneumococcus type III.

    J. Exp. Med. 1944; 79: 137-158

    • Franklin R.E.
    • Gosling R.G.

    Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate.

    Nature. 1953; 172: 156-157

    • Watson J.D.
    • Crick F.H.

    Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid.

    Nature. 1953; 171: 737-738

    • Brenner S.
    • et al.

    An unstable intermediate carrying information from genes to ribosomes for protein synthesis.

    Nature. 1961; 190: 576-581

    • Gros F.
    • et al.

    Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli.

    Nature. 1961; 190: 581-585

    • Lohrmann R.
    • et al.

    Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides.

    J. Am. Chem. Soc. 1966; 88: 819-829

    • Brenner S.
    • et al.

    UGA: A third nonsense triplet in the genetic code.

    Nature. 1967; 213: 449-450

  • Central dogma of molecular biology.

    Nature. 1970; 227: 561-563

    • Grunberg-Manago M.

    Enzymatic synthesis of nucleic acids.

    Prog. Biophys. Mol. Biol. 1963; 13: 175-239

    • Cramer P.
    • et al.

    Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution.

    Science. 2001; 292: 1863-1876

    • Nissen P.
    • et al.

    The structural basis of ribosome activity in peptide bond synthesis.

    Science. 2000; 289: 920-930

    • Jacob F.
    • Monod J.

    Genetic regulatory mechanisms in the synthesis of proteins.

    J. Mol. Biol. 1961; 3: 318-356

    • Luria S.E.
    • Delbrück M.

    Mutations of bacteria from virus sensitivity to virus resistance.

    Genetics. 1943; 28: 491

    • Arber W.
    • Linn S.

    DNA modification and restriction.

    Annu. Rev. Biochem. 1969; 38: 467-500

  • Lysogeny.

    Bacteriol. Rev. 1953; 17: 269-337

    • Nathans D.
    • Smith H.O.

    Restriction endonucleases in the analysis and restructuring of DNA molecules.

    Annu. Rev. Biochem. 1975; 44: 273-293

    • Mertz J.E.
    • Davis R.W.

    Cleavage of DNA by R1 restriction endonuclease generates cohesive ends.

    Proc. Natl. Acad. Sci. U. S. A. 1972; 69: 3370-3374

    • Jackson D.A.
    • et al.

    Biochemical method for inserting new genetic information into DNA of simian virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli.

    Proc. Natl. Acad. Sci. U. S. A. 1972; 69: 2904-2909

    • Chang A.C.
    • Cohen S.N.

    Genome construction between bacterial species in vitro: Replication and expression of Staphylococcus plasmid genes in Escherichia coli.

    Proc. Natl. Acad. Sci. U. S. A. 1974; 71: 1030-1034

    • Morrow J.F.
    • et al.

    Replication and transcription of eukaryotic DNA in Escherichia coli.

    Proc. Natl. Acad. Sci. U. S. A. 1974; 71: 1743-1747

    • Hutchison C.A.
    • et al.

    Mutagenesis at a specific position in a DNA sequence.

    J. Biol. Chem. 1978; 253: 6551-6560

    • Maxam A.M.
    • Gilbert W.

    A new method for sequencing DNA.

    Proc. Natl. Acad. Sci. U. S. A. 1977; 74: 560-564

    • Sanger F.
    • et al.

    DNA sequencing with chain-terminating inhibitors.

    Proc. Natl. Acad. Sci. U. S. A. 1977; 74: 5463-5467

    • Itakura K.
    • et al.

    Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin.

    Science. 1977; 198: 1056-1063

    • Riggs A.
    • Itakura K.

    Synthetic DNA and medicine.

    Am. J. Hum. Genet. 1979; 31: 531

    • Saiki R.K.
    • et al.

    Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.

    Science. 1985; 230: 1350-1354

    • van Kasteren P.B.
    • et al.

    Comparison of seven commercial RT-PCR diagnostic kits for COVID-19.

    J. Clin. Virol. 2020; 128104412

    • Stemmer W.P.

    Rapid evolution of a protein in vitro by DNA shuffling.

    Nature. 1994; 370: 389-391

    • Arnold F.H.

    Directed evolution: Bringing new chemistry to life.

    Angew. Chem. Int. Ed. Engl. 2018; 57: 4143-4148

    • Bouzetos E.
    • et al.

    (R) evolution-on-a-chip.

    Trends Biotechnol. 2022; 40: 60-76

    • van Dijk E.L.
    • et al.

    Ten years of next-generation sequencing technology.

    Trends Genet. 2014; 30: 418-426

    • Sanger F.
    • et al.

    Nucleotide sequence of bacteriophage φX174 DNA.

    Nature. 1977; 265: 687-695

    • Fleischmann R.D.
    • et al.

    Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.

    Science. 1995; 269: 496-512

    • Goffeau A.
    • et al.

    Life with 6000 genes.

    Science. 1996; 274: 546-567

    • Arabidopsis Genome Initiative

    Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.

    Nature. 2000; 408: 796-815

    • Venter J.C.
    • et al.

    The sequence of the human genome.

    Science. 2001; 291: 1304-1351

    • Nurk S.
    • et al.

    The complete sequence of a human genome.

    Science. 2022; 376: 44-53

    • Lander E.S.
    • et al.

    Initial sequencing and analysis of the human genome.

    Nature. 2001; 409: 860-921

    • Merryman C.
    • Gibson D.G.

    Methods and applications for assembling large DNA constructs.

    Metab. Eng. 2012; 14: 196-204

    • Murphy K.C.

    λ recombination and recombineering.

    EcoSal Plus. 2016; 7

    • Lesterlin C.
    • et al.

    RecA bundles mediate homology pairing between distant sisters during DNA break repair.

    Nature. 2014; 506: 249-253

    • Patinios C.
    • et al.

    Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas.

    Nucleic Acids Res. 2021;

    • Reece-Hoyes J.S.
    • Walhout A.J.

    Gateway recombinational cloning.

    Cold Spring Harbor Protoc. 2018; 2018 ()

    • Tuntufye H.N.
    • Goddeeris B.M.

    Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli.

    FEMS Microbiol. Lett. 2011; 325: 140-147

    • Zhang Y.
    • et al.

    A new logic for DNA engineering using recombination in Escherichia coli.

    Nat. Genet. 1998; 20: 123-128

    • Murphy K.C.

    Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli.

    J. Bacteriol. 1998; 180: 2063-2071

    • Zhang Y.
    • et al.

    DNA cloning by homologous recombination in Escherichia coli.

    Nat. Biotechnol. 2000; 18: 1314-1317

    • Wannier T.M.
    • et al.

    Recombineering and MAGE.

    Nat. Rev. Methods Prim. 2021; 1: 7

    • Yilmaz S.
    • et al.

    Towards next-generation cell factories by rational genome-scale engineering.

    Nat. Catal. 2022; 5: 751-765

    • Jiang W.
    • et al.

    RNA-guided editing of bacterial genomes using CRISPR-Cas systems.

    Nat. Biotechnol. 2013; 31: 233-239

    • Bubnov D.M.
    • et al.

    Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs.

    Nucleic Acids Res. 2022; 50: 8947-8960

    • Stoddard B.L.

    Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification.

    Structure. 2011; 19: 7-15

    • Kim Y.-G.
    • et al.

    Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.

    Proc. Natl. Acad. Sci. 1996; 93: 1156-1160

    • Urnov F.D.
    • et al.

    Genome editing with engineered zinc finger nucleases.

    Nat. Rev. Genet. 2010; 11: 636-646

    • Boch J.
    • et al.

    Breaking the code of DNA binding specificity of TAL-type III effectors.

    Science. 2009; 326: 1509-1512

    • Christian M.
    • et al.

    Targeting DNA double-strand breaks with TAL effector nucleases.

    Genetics. 2010; 186: 757-761

    • Li Y.
    • et al.

    Assembly and validation of versatile transcription activator-like effector libraries.

    Sci. Rep. 2014; 4: 1-7

    • Feng R.
    • et al.

    RNA Therapeutics – research and clinical advancements.

    Front. Mol. Biosci. 2021; 913

    • Swarts D.C.
    • et al.

    DNA-guided DNA interference by a prokaryotic Argonaute.

    Nature. 2014; 507: 258-261

    • Hegge J.W.
    • et al.

    Prokaryotic Argonaute proteins: Novel genome-editing tools?.

    Nat. Rev. Microbiol. 2018; 16: 5-11

    • Hegge J.W.
    • et al.

    DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute.

    Nucleic Acids Res. 2019; 47: 5809-5821

    • Fu L.
    • et al.

    The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria.

    Nucleic Acids Res. 2019; 47: 3568-3579

    • Huang S.
    • et al.

    Guide-directed DNA cleavage by a prokaryotic Argonaute protein induces chromosome recombination in Escherichia coli.

    bioRxiv. 2022; ()

    • Esyunina D.
    • et al.

    Specific targeting of plasmids with Argonaute enables genome editing.

    bioRxiv. 2022; ()

    • Song J.
    • et al.

    Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics.

    Nucleic Acids Res. 2020; 48: e19

    • Ishino Y.
    • et al.

    Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.

    J. Bacteriol. 1987; 169: 5429-5433

    • Jansen R.
    • et al.

    Identification of genes that are associated with DNA repeats in prokaryotes.

    Mol. Microbiol. 2002; 43: 1565-1575

    • Makarova K.S.
    • et al.

    A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.

    Nucleic Acids Res. 2002; 30: 482-496

    • Makarova K.S.
    • et al.

    Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants.

    Nat. Rev. Microbiol. 2020; 18: 67-83

    • Wu W.Y.
    • et al.

    The miniature CRISPR-Cas12m effector binds DNA to block transcription.

    Mol. Cell. 2022; 82: 4487-4502.e7

    • Brouns S.J.
    • et al.

    Small CRISPR RNAs guide antiviral defense in prokaryotes.

    Science. 2008; 321: 960-964

    • Sinkunas T.
    • et al.

    Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    EMBO J. 2011; 30: 1335-1342

    • Garneau J.E.
    • et al.

    The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.

    Nature. 2010; 468: 67-71

    • Zetsche B.
    • et al.

    Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.

    Cell. 2015; 163: 759-771

    • Hale C.R.
    • et al.

    RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.

    Cell. 2009; 139: 945-956

    • Abudayyeh O.O.
    • et al.

    C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.

    Science. 2016; 353aaf5573

    • Strecker J.
    • et al.

    RNA-guided DNA insertion with CRISPR-associated transposases.

    Science. 2019; 365: 48-53

    • Huang C.J.
    • et al.

    A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression.

    Mol. Cell. 2022; 82: 2148-2160. e2144

    • Barrangou R.
    • et al.

    CRISPR provides acquired resistance against viruses in prokaryotes.

    Science. 2007; 315: 1709-1712

    • Deltcheva E.
    • et al.

    CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.

    Nature. 2011; 471: 602-607

    • Deveau H.
    • et al.

    Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.

    J. Bacteriol. 2008; 190: 1390-1400

    • Mojica F.J.
    • et al.

    Short motif sequences determine the targets of the prokaryotic CRISPR defence system.

    Microbiology. 2009; 155: 733-740

    • Wu W.Y.
    • et al.

    Genome editing by natural and engineered CRISPR-associated nucleases.

    Nat. Chem. Biol. 2018; 14: 642-651

    • Sapranauskas R.
    • et al.

    The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli.

    Nucleic Acids Res. 2011; 39: 9275-9282

    • Jinek M.
    • et al.

    A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity.

    Science. 2012; 337: 816-821

    • Gasiunas G.
    • et al.

    Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.

    Proc. Natl. Acad. Sci. 2012; 109: E2579-E2586

    • Cho S.W.
    • et al.

    Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.

    Nat. Biotechnol. 2013; 31: 230-232

    • Cong L.
    • et al.

    Multiplex genome engineering using CRISPR/Cas systems.

    Science. 2013; 339: 819-823

    • Jinek M.
    • et al.

    RNA-programmed genome editing in human cells.

    eLife. 2013; 2e00471

    • Mali P.
    • et al.

    RNA-guided human genome engineering via Cas9.

    Science. 2013; 339: 823-826

    • Makarova K.S.
    • et al.

    An updated evolutionary classification of CRISPR–Cas systems.

    Nat. Rev. Microbiol. 2015; 13: 722-736

    • Cameron P.
    • et al.

    Harnessing type I CRISPR–Cas systems for genome engineering in human cells.

    Nat. Biotechnol. 2019; 37: 1471-1477

    • Slaymaker I.M.
    • Gaudelli N.M.

    Engineering Cas9 for human genome editing.

    Curr. Opin. Struct. Biol. 2021; 69: 86-98

    • Anzalone A.V.
    • et al.

    Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors.

    Nat. Biotechnol. 2020; 38: 824-844

    • Komor A.C.
    • et al.

    Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    Nature. 2016; 533: 420-424

    • Anzalone A.V.
    • et al.

    Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.

    Nat. Biotechnol. 2022; 40: 731-740

    • Yarnall M.T.
    • et al.

    Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.

    Nat. Biotechnol. 2022; ()

    • Gilbert L.A.
    • et al.

    Genome-scale CRISPR-mediated control of gene repression and activation.

    Cell. 2014; 159: 647-661

    • Bikard D.
    • et al.

    Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.

    Nucleic Acids Res. 2013; 41: 7429-7437

    • Cox D.B.
    • et al.

    RNA editing with CRISPR-Cas13.

    Science. 2017; 358: 1019-1027

    • Xu C.
    • et al.

    Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes.

    Nat. Methods. 2021; 18: 499-506

    • Marina R.J.
    • et al.

    Evaluation of engineered CRISPR-Cas-mediated systems for site-specific RNA editing.

    Cell Rep. 2020; 33108350

    • Shams A.
    • et al.

    Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules.

    Nat. Commun. 2021; 12: 5664

    • Zhang L.
    • et al.

    AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines.

    Nat. Commun. 2021; 12: 3908

    • Nguyen G.T.
    • et al.

    Miniature CRISPR-Cas12 endonucleases–Programmed DNA targeting in a smaller package.

    Curr. Opin. Struct. Biol. 2022; 77102466

    • Schmitz M.
    • et al.

    Structural basis for the assembly of the type V CRISPR-associated transposon complex.

    Cell. 2022; 185: 4999-5010.e17

    • Jiao C.
    • et al.

    Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9.

    Science. 2021; 372: 941-948

    • Chen J.S.
    • et al.

    CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity.

    Science. 2018; 360: 436-439

    • Gootenberg J.S.
    • et al.

    Nucleic acid detection with CRISPR-Cas13a/C2c2.

    Science. 2017; 356: 438-442

    • Santiago-Frangos A.
    • et al.

    Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic.

    Cell Rep. Med. 2021; 2100319

    • Steens J.A.
    • et al.

    SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation.

    Nat. Commun. 2021; 12: 5033

    • Donohoue P.D.
    • et al.

    Advances in industrial biotechnology using CRISPR-Cas systems.

    Trends Biotechnol. 2018; 36: 134-146

  • GABA-enriched tomato is first CRISPR-edited food to enter market.

    Nat. Biotechnol. 2022; 40: 9-11

    • Zsögön A.
    • et al.

    De novo domestication of wild tomato using genome editing.

    Nat. Biotechnol. 2018; 36: 1211-1216

    • Zong Y.
    • et al.

    Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.

    Nat. Biotechnol. 2017; 35: 438-440

    • Rodríguez-Leal D.
    • et al.

    Engineering quantitative trait variation for crop improvement by genome editing.

    Cell. 2017; 171: 470-480. e478

    • Li C.
    • et al.

    Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors.

    Nat. Biotechnol. 2020; 38: 875-882

  • Genome engineering for crop improvement and future agriculture.

    Cell. 2021; 184: 1621-1635

    • Barrangou R.
    • Doudna J.A.

    Applications of CRISPR technologies in research and beyond.

    Nat. Biotechnol. 2016; 34: 933-941

    • Huang C.-H.
    • et al.

    Applications of CRISPR-Cas enzymes in cancer therapeutics and detection.

    Trends Cancer. 2018; 4: 499-512

    • Riley R.S.
    • et al.

    Delivery technologies for cancer immunotherapy.

    Nat. Rev. Drug Discov. 2019; 18: 175-196

    • Doudna J.A.

    The promise and challenge of therapeutic genome editing.

    Nature. 2020; 578: 229-236

    • Gallagher J.

    Base editing: Revolutionary therapy clears girl’s incurable cancer.

    • Kounang N.

    Gene editing technology for treatment-resistant cancer could be a ‘scientific layup’ to treat other diseases.

    • Ledford H.

    CRISPR treatment inserted directly into the body for first time.

    Nature. 2020; 579: 185-186

    • Baek M.
    • et al.

    Accurate prediction of protein structures and interactions using a three-track neural network.

    Science. 2021; 373: 871-876

    • Jumper J.
    • et al.

    Highly accurate protein structure prediction with AlphaFold.

    Nature. 2021; 596: 583-589

    • Rives A.
    • et al.

    Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.

    Proc. Natl. Acad. Sci. 2021; 118e2016239118

  • 60 years ago, Francis Crick changed the logic of biology.

    PLoS Biol. 2017; 15e2003243

    • Mans R.
    • et al.

    CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.

    FEMS Yeast Res. 2015; 15fov004

    • Anzalone A.V.
    • et al.

    Search-and-replace genome editing without double-strand breaks or donor DNA.

    Nature. 2019; 576: 149-157

    • Mojica F.J.
    • et al.

    Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.

    J. Mol. Evol. 2005; 60: 174-182

    • Pourcel C.
    • et al.

    CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies.

    Microbiology. 2005; 151: 653-663

    • Bolotin A.
    • et al.

    Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

    Microbiology. 2005; 151: 2551-2561

    • Makarova K.S.
    • et al.

    Evolution and classification of the CRISPR–Cas systems.

    Nat. Rev. Microbiol. 2011; 9: 467-477

    • Wiedenheft B.
    • et al.

    Structures of the RNA-guided surveillance complex from a bacterial immune system.

    Nature. 2011; 477: 486-489

    • Nishimasu H.
    • et al.

    Crystal structure of Cas9 in complex with guide RNA and target DNA.

    Cell. 2014; 156: 935-949

    • Jinek M.
    • et al.

    Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.

    Science. 2014; 3431247997

    • Niewoehner O.
    • et al.

    Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers.

    Nature. 2017; 548: 543-548

    • Kazlauskiene M.
    • et al.

    A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.

    Science. 2017; 357: 605-609

    • Klompe S.E.
    • et al.

    Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration.

    Nature. 2019; 571: 219-225

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?