Connect with us

Big Data

Teamsters union steps up efforts to organize Amazon workers

Published

on

(Reuters) -The International Brotherhood of Teamsters, a labor union in the United States and Canada, is stepping up efforts to unionize workers at Amazon.com Inc by creating a company-specific division to aid workers, it said on Tuesday.

Representatives from 500 unions, which together account for 1.4 million workers in the United States, have come together at the 30th international convention of Teamsters to support and help improve the livelihoods of Amazon workers.

The union tweeted that delegates will vote on a resolution to make the campaign at Amazon a ‘top priority’.

It is also planning pressure campaigns involving work stoppages, petitions and other collective action to push Amazon to bargain over working conditions and meet workers’ demands.

Amazon did not immediately respond to Reuters request for comment.

The e-commerce giant and one of the largest private employers in America has for decades discouraged attempts among its over 800,000 U.S. employees to organize, showing managers how to identify union activity, raising wages and warning that union dues would cut into pay.

In April, Amazon Alabama workers voted against forming a union, owing to factors including the company’s fierce resistance to unionization, workers’ skepticism that organizing would get them a better deal and decisions on election parameters. (https://reut.rs/3d3UxV7)

(Reporting by Chavi Mehta and Eva Mathews in Bengaluru; Editing by Krishna Chandra Eluri and Arun Koyyur)

Image Credit: Reuters

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://datafloq.com/read/teamsters-union-steps-efforts-organize-amazon-workers/15700

Big Data

If you did not already know

Published

on

DataOps google
DataOps is an automated, process-oriented methodology, used by analytic and data teams, to improve the quality and reduce the cycle time of data analytics. While DataOps began as a set of best practices, it has now matured to become a new and independent approach to data analytics. DataOps applies to the entire data lifecycle from data preparation to reporting, and recognizes the interconnected nature of the data analytics team and information technology operations. From a process and methodology perspective, DataOps applies Agile software development, DevOps software development practices and the statistical process control used in lean manufacturing, to data analytics. In DataOps, development of new analytics is streamlined using Agile software development, an iterative project management methodology that replaces the traditional Waterfall sequential methodology. Studies show that software development projects complete significantly faster and with far fewer defects when Agile Development is used. The Agile methodology is particularly effective in environments where requirements are quickly evolving – a situation well known to data analytics professionals. DevOps focuses on continuous delivery by leveraging on-demand IT resources and by automating test and deployment of analytics. This merging of software development and IT operations has improved velocity, quality, predictability and scale of software engineering and deployment. Borrowing methods from DevOps, DataOps seeks to bring these same improvements to data analytics. Like lean manufacturing, DataOps utilizes statistical process control (SPC) to monitor and control the data analytics pipeline. With SPC in place, the data flowing through an operational system is constantly monitored and verified to be working. If an anomaly occurs, the data analytics team can be notified through an automated alert. DataOps is not tied to a particular technology, architecture, tool, language or framework. Tools that support DataOps promote collaboration, orchestration, agility, quality, security, access and ease of use. …

CoSegNet google
We introduce CoSegNet, a deep neural network architecture for co-segmentation of a set of 3D shapes represented as point clouds. CoSegNet takes as input a set of unsegmented shapes, proposes per-shape parts, and then jointly optimizes the part labelings across the set subjected to a novel group consistency loss expressed via matrix rank estimates. The proposals are refined in each iteration by an auxiliary network that acts as a weak regularizing prior, pre-trained to denoise noisy, unlabeled parts from a large collection of segmented 3D shapes, where the part compositions within the same object category can be highly inconsistent. The output is a consistent part labeling for the input set, with each shape segmented into up to K (a user-specified hyperparameter) parts. The overall pipeline is thus weakly supervised, producing consistent segmentations tailored to the test set, without consistent ground-truth segmentations. We show qualitative and quantitative results from CoSegNet and evaluate it via ablation studies and comparisons to state-of-the-art co-segmentation methods. …

Stochastic Computation Graph (SCG) google
Stochastic computation graphs are directed acyclic graphs that encode the dependency structure of computation to be performed. The graphical notation generalizes directed graphical models. …

Smooth Density Spatial Quantile Regression google
We derive the properties and demonstrate the desirability of a model-based method for estimating the spatially-varying effects of covariates on the quantile function. By modeling the quantile function as a combination of I-spline basis functions and Pareto tail distributions, we allow for flexible parametric modeling of the extremes while preserving non-parametric flexibility in the center of the distribution. We further establish that the model guarantees the desired degree of differentiability in the density function and enables the estimation of non-stationary covariance functions dependent on the predictors. We demonstrate through a simulation study that the proposed method produces more efficient estimates of the effects of predictors than other methods, particularly in distributions with heavy tails. To illustrate the utility of the model we apply it to measurements of benzene collected around an oil refinery to determine the effect of an emission source within the refinery on the distribution of the fence line measurements. …

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://analytixon.com/2021/10/24/if-you-did-not-already-know-1540/

Continue Reading

Big Data

If you did not already know

Published

on

DataOps google
DataOps is an automated, process-oriented methodology, used by analytic and data teams, to improve the quality and reduce the cycle time of data analytics. While DataOps began as a set of best practices, it has now matured to become a new and independent approach to data analytics. DataOps applies to the entire data lifecycle from data preparation to reporting, and recognizes the interconnected nature of the data analytics team and information technology operations. From a process and methodology perspective, DataOps applies Agile software development, DevOps software development practices and the statistical process control used in lean manufacturing, to data analytics. In DataOps, development of new analytics is streamlined using Agile software development, an iterative project management methodology that replaces the traditional Waterfall sequential methodology. Studies show that software development projects complete significantly faster and with far fewer defects when Agile Development is used. The Agile methodology is particularly effective in environments where requirements are quickly evolving – a situation well known to data analytics professionals. DevOps focuses on continuous delivery by leveraging on-demand IT resources and by automating test and deployment of analytics. This merging of software development and IT operations has improved velocity, quality, predictability and scale of software engineering and deployment. Borrowing methods from DevOps, DataOps seeks to bring these same improvements to data analytics. Like lean manufacturing, DataOps utilizes statistical process control (SPC) to monitor and control the data analytics pipeline. With SPC in place, the data flowing through an operational system is constantly monitored and verified to be working. If an anomaly occurs, the data analytics team can be notified through an automated alert. DataOps is not tied to a particular technology, architecture, tool, language or framework. Tools that support DataOps promote collaboration, orchestration, agility, quality, security, access and ease of use. …

CoSegNet google
We introduce CoSegNet, a deep neural network architecture for co-segmentation of a set of 3D shapes represented as point clouds. CoSegNet takes as input a set of unsegmented shapes, proposes per-shape parts, and then jointly optimizes the part labelings across the set subjected to a novel group consistency loss expressed via matrix rank estimates. The proposals are refined in each iteration by an auxiliary network that acts as a weak regularizing prior, pre-trained to denoise noisy, unlabeled parts from a large collection of segmented 3D shapes, where the part compositions within the same object category can be highly inconsistent. The output is a consistent part labeling for the input set, with each shape segmented into up to K (a user-specified hyperparameter) parts. The overall pipeline is thus weakly supervised, producing consistent segmentations tailored to the test set, without consistent ground-truth segmentations. We show qualitative and quantitative results from CoSegNet and evaluate it via ablation studies and comparisons to state-of-the-art co-segmentation methods. …

Stochastic Computation Graph (SCG) google
Stochastic computation graphs are directed acyclic graphs that encode the dependency structure of computation to be performed. The graphical notation generalizes directed graphical models. …

Smooth Density Spatial Quantile Regression google
We derive the properties and demonstrate the desirability of a model-based method for estimating the spatially-varying effects of covariates on the quantile function. By modeling the quantile function as a combination of I-spline basis functions and Pareto tail distributions, we allow for flexible parametric modeling of the extremes while preserving non-parametric flexibility in the center of the distribution. We further establish that the model guarantees the desired degree of differentiability in the density function and enables the estimation of non-stationary covariance functions dependent on the predictors. We demonstrate through a simulation study that the proposed method produces more efficient estimates of the effects of predictors than other methods, particularly in distributions with heavy tails. To illustrate the utility of the model we apply it to measurements of benzene collected around an oil refinery to determine the effect of an emission source within the refinery on the distribution of the fence line measurements. …

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://analytixon.com/2021/10/24/if-you-did-not-already-know-1540/

Continue Reading

Big Data

If you did not already know

Published

on

Correntropy google
Correntropy is a nonlinear similarity measure between two random variables.
Learning with the Maximum Correntropy Criterion Induced Losses for Regression


Patient Event Graph (PatientEG) google
Medical activities, such as diagnoses, medicine treatments, and laboratory tests, as well as temporal relations between these activities are the basic concepts in clinical research. However, existing relational data model on electronic medical records (EMRs) lacks explicit and accurate semantic definitions of these concepts. It leads to the inconvenience of query construction and the inefficiency of query execution where multi-table join queries are frequently required. In this paper, we propose a patient event graph (PatientEG) model to capture the characteristics of EMRs. We respectively define five types of medical entities, five types of medical events and five types of temporal relations. Based on the proposed model, we also construct a PatientEG dataset with 191,294 events, 3,429 distinct entities, and 545,993 temporal relations using EMRs from Shanghai Shuguang hospital. To help to normalize entity values which contain synonyms, hyponymies, and abbreviations, we link them with the Chinese biomedical knowledge graph. With the help of PatientEG dataset, we are able to conveniently perform complex queries for clinical research such as auxiliary diagnosis and therapeutic effectiveness analysis. In addition, we provide a SPARQL endpoint to access PatientEG dataset and the dataset is also publicly available online. Also, we list several illustrative SPARQL queries on our website. …

LogitBoost Autoregressive Networks google
Multivariate binary distributions can be decomposed into products of univariate conditional distributions. Recently popular approaches have modeled these conditionals through neural networks with sophisticated weight-sharing structures. It is shown that state-of-the-art performance on several standard benchmark datasets can actually be achieved by training separate probability estimators for each dimension. In that case, model training can be trivially parallelized over data dimensions. On the other hand, complexity control has to be performed for each learned conditional distribution. Three possible methods are considered and experimentally compared. The estimator that is employed for each conditional is LogitBoost. Similarities and differences between the proposed approach and autoregressive models based on neural networks are discussed in detail. …

Discretification google
Discretification’ is the mechanism of making continuous data discrete. If you really grasp the concept, you may be thinking ‘Wait a minute, the type of data we are collecting is discrete in and of itself! Data can EITHER be discrete OR continuous, it can’t be both!’ You would be correct. But what if we manually selected values along that continuous measurement, and declared them to be in a specific category? For instance, if we declare 72.0 degrees and greater to be ‘Hot’, 35.0-71.9 degrees to be ‘Moderate’, and anything lower than 35.0 degrees to be ‘Cold’, we have ‘discretified’ temperature! Our readings that were once continuous now fit into distinct categories. So, where we do we draw the boundaries for these categories? What makes 35.0 degrees ‘Cold’ and 35.1 degrees ‘Moderate’? At is at this juncture that the TRUE decision is being made. The beauty of approaching the challenge in this manner is that it is data-centric, not concept-centric. Let’s walk through our marketing example first without using discretification, then with it. …

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://analytixon.com/2021/10/23/if-you-did-not-already-know-1539/

Continue Reading

Big Data

Capturing the signal of weak electricigens: a worthy endeavour

Published

on

Recently several non-traditional electroactive microorganisms have been discovered. These can be considered weak electricigens; microorganisms that typically rely on soluble electron acceptors and donors in their lifecycle but are also capable of extracellular electron transfer (EET), resulting in either a low, unreliable, or otherwise unexpected current. These unanticipated electroactive microorganisms represent a new chapter in electromicrobiology and have important medical, environmental, and biotechnological relevance.
PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00229-8?rss=yes

Continue Reading
Energy5 days ago

IJGlobal reconoce a Atlas Renewable Energy con sus premios ESG Energy Deal of the Year 2020 y ESG Social

Energy5 days ago

Notice of Data Security Breach Incident

Esports5 days ago

Phasmophobia Nightmare Halloween Update Coming Oct. 25

Cyber Security5 days ago

Ransomware Took a New Twist with US Leading a Law Enforcement Effort to Hack Back

AR/VR4 days ago

The VR Job Hub: Make Real, Survios, SAIC & Armature Studio

Cleantech4 days ago

Q3 Saw Europe’s EV Share Break New Ground Above 20% & Overtake Diesel For First Time

Esports5 days ago

PGL Stockholm Major: Scores, standings, and results

Blockchain3 days ago

Blockchain Technology Explained – Technology that will change How we use Money

Esports5 days ago

Bernardo Silva FIFA 22: How to Complete RTTK SBC

Cyber Security5 days ago

How to Choose CRM Software

Aerospace5 days ago

Live coverage: Ariane 5 rocket counting down to launch from French Guiana

Code3 days ago

ZelioSoft 2 – A Beginners Impression

Esports5 days ago

Spacestation Gaming’s Frexs talks ALGS, input wars, and building a winning team

Esports5 days ago

Supercell reveals upcoming 2021 Brawl-O-Ween event on Brawl Stars

Aerospace5 days ago

Under watchful eye of NASA, teams prep for final Ariane 5 flight before Webb

Esports5 days ago

How to Change Your BattleTag Name for Free

HRTech5 days ago

Bitcoin News: IWF kooperiert nun doch mit dem “coolsten” Diktator

Esports5 days ago

Cloud9, NRG dominate NA ALGS day 3

Energy5 days ago

IJGlobal reconhece a Atlas Renewable Energy com os prêmios Acordo de Energia do Ano ESG de 2020 e Social ESG

Esports4 days ago

Fredy122 talks Rogue’s strength in the LEC’s best-of-one format

Trending