Zephyrnet Logo

Tag: Point of View

Podcast 346: Gabe Krajicek of Kasasa

We have seen this stat so many times. If you add up all the community banks and credit unions in the United States their scale would make them a top-five bank. Sure, but that really doesn’t make much sense because all these community institutions are separate companies. But what if you could combine some of the marketing and product offerings and streamline it across hundreds or even thousands of institutions? Then you might see some real advantages. Our next guest […]

The post Podcast 346: Gabe Krajicek of Kasasa appeared first on LendIt Fintech News.

Polkadot Price Prediction – Will DOT Price Hit $80 Soon?

Polkadot-DOT-Price-PredictionBullish DOT price prediction ranges from $29.93 to $55. The DOT price might also reach $80 soon. DOT bearish market ...

Read More...

The best altcoins to kickstart your March Investment Journey

The crypto market has been up and down lately. The volatile market is just…

The post The best altcoins to kickstart your March Investment Journey appeared first on Coin Journal.

NFT Enthusiast’s Thoughts on NFT Discord Whitelist Grinders

In part 2 of our article series about Discord NFT Whitelist Grinding, we talked about concerns and problems about this new Filipino online side-hustle.

The post NFT Enthusiast’s Thoughts on NFT Discord Whitelist Grinders appeared first on BitPinas.

Build, Share, Deploy: how business analysts and data scientists achieve faster time-to-market using no-code ML and Amazon SageMaker Canvas

Machine learning (ML) helps organizations increase revenue, drive business growth, and reduce cost by optimizing core business functions across multiple verticals, such as demand forecasting, credit scoring, pricing, predicting customer churn, identifying next best offers, predicting late shipments, and improving manufacturing quality. Traditional ML development cycles take months and require scarce data science and ML […]

Devang Sachdev (Snorkel AI): Nailing Your Platform Go-to-Market

Not all SaaS products have to be platforms. There are countless definitions swirling around about what it means to be…

The post Devang Sachdev (Snorkel AI): Nailing Your Platform Go-to-Market appeared first on OpenView.

Predict residential real estate prices at ImmoScout24 with Amazon SageMaker

This is a guest post by Oliver Frost, data scientist at ImmoScout24, in partnership with Lukas Müller, AWS Solutions Architect. In 2010, ImmoScout24 released a price index for residential real estate in Germany: the IMX. It was based on ImmoScout24 listings. Besides the price, listings typically contain a lot of specific information such as the […]

694 Airline Livery

Designing an airline livery and celebrating the 400th episode of the Plane Talking UK podcast.

The post 694 Airline Livery appeared first on Airplane Geeks Podcast.

Fujitsu and Tokyo Medical and Dental University leverage world’s fastest supercomputer and AI technology for scientific discovery to shed light on drug resistance in...

TOKYO, Mar 7, 2022 - (JCN Newswire) - Fujitsu and the Tokyo Medical and Dental University (TMDU) today announced a new technology that uses AI to discover new causal mechanisms of drug resistance in cancer treatments from clinical data. Leveraging the world's fastest supercomputer "Fugaku,"(1) the new technology enables high-speed calculation of 20,000 variables of data within a single day and allows for the discovery of previously unknown causal relationships relating to drug resistance in cancer cells from 1,000 trillion different possibilities.


Fujitsu and TMDU applied this technology to gene expression level(2) data obtained from cancer cell lines in order to analyze drug resistance(3) against anticancer drugs, and succeeded in extracting a new causal mechanism of a previously unknown gene that suggests a cause of resistance to lung cancer drugs. The new technology is expected to contribute to the acceleration of drug discovery and the realization of cancer therapies individualized for each patient.
The technology was developed under the theme of "elucidation of the cause and diversity of cancer using large-scale data analysis and AI technology," an initiative supported by TMDU, Kyoto University and Fujitsu as part of the supercomputer Fugaku achievement acceleration program(4).

Background

Even if a patient receives a targeted cancer drug(5) therapy, the appearance of drug-resistant cancer cells represents an ongoing threat to full remission. The mechanism for how certain cancers become drug resistant remains unclear, however, and researchers continue to work on new methods of analysis that shed light on how cells that have multiple driver mutations(6) acquire drug resistance. In drug development and clinical trials involving drug repositioning(7), it is important to identify patients for whom drugs are anticipated to have an effect. However, the effectiveness of drugs may differ depending on the organ and the individual and variations in gene expression, and the number of patterns combining expression levels of multiple genes exceeds 1,000 trillion(8). A comprehensive search of all 20,000 genes in the human genome would thus take more than 4,000 years with a conventional computer and finding ways to accelerate the process represents a major challenge.

Newly developed technology

Fujitsu implemented parallel conditional and causal algorithms to maximize computational performance with the supercomputer Fugaku to analyze the human genome within a timeframe needed for practical research. By utilizing Fujitsu's "Wide Learning"(9) AI technology to extract combinations of potential genes relating to the emergence of drug resistance based on statistical information, Fujitsu developed a novel technology that makes it possible to conduct a comprehensive search within a day.

Results

As a result of running data of the Dependency Map (DepMap)(10) portal using this technology on the supercomputer Fugaku, Fujitsu and TMDU were able to search the entire human genome for conditions and causality within a single day and determine the genes that cause resistance to drugs used to treat lung cancer(11).

Comment from Prof. Seiji Ogawa, Graduate School of Medicine, Kyoto University

Promising technologies like Fujitsu's AI technology for scientific discovery ("Wide Learning") may one day contribute to the discovery of biomarkers, which represent an area of growing interest in drug development. The key to the success of new drug development is to identify patients who are expected to benefit from new drugs and conduct clinical trials. If the marker that predicts who will benefit from the drug is known, the cost of clinical trials can significantly be reduced and the probability of success by conducting individual clinical trials can be increased. From this point of view, pharmaceutical manufacturers and others are expected to be very interested in this technology. The fact that it has been implemented using Fugaku has also raised expectations.

Future Plans

Moving forward, Fujitsu and TMDU will conduct a multilayered and comprehensive analysis that combines various data including time axis and location data with the aim of accelerating medical research, including in the field of drug efficacy, as well as to shed light on the causes of cancer.
Fujitsu and TMDU will also collaborate in experimental research in the fields of drug discovery and medicine. TMDU will further utilize the technology developed in this research to promote research on strategies for intractable diseases such as cancer.

In addition to medical care, Fujitsu will utilize the new technology to resolve challenges in a variety of fields, including marketing, system operations and manufacturing.

Acknowledgements
This research was conducted as part of Ministry of Education, Culture, Sports, Science and Technology's Fugaku Achievement Acceleration Program "Understanding the Origin and Diversity of Cancer through Large-scale Data Analysis and Artificial Intelligence Technologies" (JPMXP 1020200102). A part of the research was conducted with the computational resources of supercomputer Fugaku (Issue #: hp 200138, hp 210167).

(1) Supercomputer "Fugaku":
A computer installed at RIKEN as a successor to the supercomputer "K." From June 2020 to November 3, it ranked first in 4 categories in the supercomputer rankings for 4 consecutive years. Full operation started on March 9, 2021.
(2) Gene expression level :
Amount of RNA copied from DNA (the same nucleic acid as DNA synthesized by transcription using some DNA sequences as templates).
(3) Drug resistance :
A phenomenon in which the effect of a drug weakens while the drug is being administered.
(4) Supercomputer Fugaku Achievement Acceleration Program :
Program started in May 2020 by the Ministry of Education, Culture, Sports, Science and Technology with the aim to achieve early results.
(5) Targeted drug :
A drug designed to act only on the molecule (protein, gene, etc.) that is causing the disease.
(6) Driver mutations :
A genetic mutation that directly causes the development or progression of cancer.
(7) Drug repositioning :
The application of existing drugs developed and approved for the treatment of one disease to the treatment of another disease.
(8) More than 1,000 trillion :
Even if the expression level of each gene is restricted to a combination of 50 major genes known to be related to cancer and the expression level of each gene is classified into 2 categories (e.g., "high" or "low" gene expression), the condition number is 2 to the power of 50, which exceeds 1,000 trillion.
(9) Wide Learning :
Official site "Hello, Wide Learning!"
(10) Dependency Map (DepMap) :
Data on the sensitivity and resistance of approximately 4,500 drugs to approximately 600 different cancer cell lines, provided by the American Broad Institute. Mutation information of cancer cell lines and expression data of all genes are included.
(11) Fujitsu and TMDU analyzed gene expression data from DepMap of approximately 300 cancer cell lines, sensitivity and resistance data of Gefitinib (molecularly targ eted drug used to treat lung cancer and other cancer types), and comprehensively searched for conditions and mechanisms of cancer cell lines that do not respond to Gefitinib. Fujitsu and TMDU identified conditions under which the expression levels of three transcription factors (genes that control gene transcription (synthesis of RNA)), ZNF516, E2F6, and EMX1, were low. In lung cancer cell lines that meet these conditions, a mechanism triggered by the transcription factors SP7 and PRRX1 was discovered as further potential causes of drug resistance in cancer cells (see reference image).

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 126,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 3.6 trillion yen (US$34 billion) for the fiscal year ended March 31, 2021. For more information, please see www.fujitsu.com.
About Tokyo Medical and Dental University

Tokyo Medical and Dental University (TMDU) is Japan's only comprehensive medical university and graduate school, and has provided advanced medical treatment through a fusion of the medical and dental fields and worked to cultivate "professionals with knowledge and humanity." TMDU contributes to human health and the well-being of society by fostering outstanding healthcare professionals with a humane and global outlook.


Copyright 2022 JCN Newswire. All rights reserved. www.jcnnewswire.comFujitsu and the Tokyo Medical and Dental University (TMDU) today announced a new technology that uses AI to discover new causal mechanisms of drug resistance in cancer treatments from clinical data.

Technical Analysis: Record Broken, as ANC Falls Over 20% on Sunday

Following a week-long winning streak, ANC finally fell on Sunday, as crypto bears finally entered the fray. Despite this, WAVES managed to maintain recent highs, and has now climbed close to 60% in the last week. Anchor protocol (ANC) Following a streak of fresh record highs from Wednesday to Saturday, Sunday saw anchor protocol (ANC) […]

Latest Intelligence

spot_img
spot_img

Chat with us

Hi there! How can I help you?