Connect with us

Biotechnology

Swiss Regenerative Medicine Biotech Closes €19M Series B

Published

on

The regenerative medicine startup Cutiss has raised €18.8M (CHF 20M) to commercialize its personalized skin graft treatment for burn patients in Switzerland and the European Union around 2022.

This is the final closing of a Series B round announced earlier this month. The lead investor in the oversubscribed round was the Swiss firm Gisev Family Office, with other contributions from new and existing investors including the US charity, the Wyss Foundation.

The University of Zurich life science spin-off targets large and deep burns that reach the lower layer of skin tissue called the dermis, which is needed for wound healing. These burns often result in painful, disfiguring scars. The current standard of treatment is a skin graft from elsewhere on the patient’s body. However, these aren’t available in large quantities, and can still result in scars because they contain little tissue from the dermis layer. 

ADVERTISEMENT

To address this problem, Cutiss harvests a tiny sample of healthy skin from the patient. Cells are expanded in vitro and then combined with a hydrogel to produce a personalized skin graft that contains both the epidermis and dermis layers.

Cutiss CEO Daniela Marino told me what makes her firm’s personalized skin grafts unique is they permanently cover deep skin defects. “We can produce large quantities of skin grafts starting from a ‘stamp-size biopsy,’ she said. “Because of the biological characteristics of our product, we expect minimal scarring after treatment.

The firm’s regenerative medicine candidate has completed a phase I clinical trial on pediatric patients and is currently in phase II testing in both adults and children. 

Cutiss will use the Series B funds to finance the development of its lead program for burns. This development includes completing ongoing phase II trials and scaling up the manufacture of the therapy. As the treatment has an orphan designation from the EMA, the company is still to decide with the EMA whether the treatment will require phase III trials. The aim is to file for market authorization in Switzerland and the EU in 2022.

We are working on the full automation of the manufacturing process, so that our product could be produced in different parts of the world, in a quick manner and also affordably,” Marino said. 

So we propose a personalized, permanent solution that can cover large areas, results in no scarring, and can be delivered to patients worldwide. There is no other product with those characteristics. 

Some current alternatives to patient skin grafts are used as temporary wound coverings but aren’t suitable for a permanent graft, such as from cadavers or animals. In contrast, Marino underlined that Cutiss’ candidate is more than temporary. 

What we do is an organ transplantation,” she said. “Skin is our largest organ, and our product remains on the body and regenerates after transplantation.

Cutiss has some big competition in the regenerative medicine field. One of the most advanced companies developing skin autograft alternatives is the UK pharma company Mallinckrodt. Its phase III-stage lab-grown skin is designed to be off-the-shelf rather than personalized, which could make it quicker to deliver to patients. Mallinckrodt aims to apply for FDA approval this year.


Images from Shutterstock

Source: https://www.labiotech.eu/medical/cutiss-regenerative-medicine/

Biotechnology

New bionics center established at MIT with $24 million gift

Published

on

A deepening understanding of the brain has created unprecedented opportunities to alleviate the challenges posed by disability. Scientists and engineers are taking design cues from biology itself to create revolutionary technologies that restore the function of bodies affected by injury, aging, or disease — from prosthetic limbs that effortlessly navigate tricky terrain to digital nervous systems that move the body after a spinal cord injury.

With the establishment of the new K. Lisa Yang Center for Bionics, MIT is pushing forward the development and deployment of enabling technologies that communicate directly with the nervous system to mitigate a broad range of disabilities. The center’s scientists, clinicians, and engineers will work together to create, test, and disseminate bionic technologies that integrate with both the body and mind.

The center is funded by a $24 million gift to MIT’s McGovern Institute for Brain Research from philanthropist Lisa Yang, a former investment banker committed to advocacy for individuals with visible and invisible disabilities. Her previous gifts to MIT have also enabled the establishment of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics in Neuroscience, Hock E. Tan and K. Lisa Yang Center for Autism Research, Y. Eva Tan Professorship in Neurotechnology, and the endowed K. Lisa Yang Post-Baccalaureate Program.

“The K. Lisa Yang Center for Bionics will provide a dynamic hub for scientists, engineers, and designers across MIT to work together on revolutionary answers to the challenges of disability,” says MIT President L. Rafael Reif. “With this visionary gift, Lisa Yang is unleashing a powerful collaborative strategy that will have broad impact across a large spectrum of human conditions — and she is sending a bright signal to the world that the lives of individuals who experience disability matter deeply.”

Video thumbnail Play video

“K. Lisa Yang Center for Bionics”
Video by Jimmy Day/MIT Media Lab

An interdisciplinary approach

To develop prosthetic limbs that move as the brain commands or optical devices that bypass an injured spinal cord to stimulate muscles, bionic developers must integrate knowledge from a diverse array of fields — from robotics and artificial intelligence to surgery, biomechanics, and design. The K. Lisa Yang Center for Bionics will be deeply interdisciplinary, uniting experts from three MIT schools: Science, Engineering, and Architecture and Planning. With clinical and surgical collaborators at Harvard Medical School, the center will ensure that research advances are tested rapidly and reach people in need, including those in traditionally underserved communities.

To support ongoing efforts to move toward a future without disability, the center will also provide four endowed fellowships for MIT graduate students working in bionics or other research areas focused on improving the lives of individuals who experience disability.

“I am thrilled to support MIT on this major research effort to enable powerful new solutions that improve the quality of life for individuals who experience disability,” says Yang. “This new commitment extends my philanthropic investment into the realm of physical disabilities, and I look forward to the center’s positive impact on countless lives, here in the U.S. and abroad.”

The center will be led by Hugh Herr, a professor of media arts and sciences at MIT’s Media Lab, and Ed Boyden, the Y. Eva Tan Professor of Neurotechnology at MIT, a professor of biological engineering, brain and cognitive sciences, and media arts and sciences, and an investigator at MIT’s McGovern Institute and the Howard Hughes Medical Institute.

A double amputee himself, Herr is a pioneer in the development of bionic limbs to improve mobility for those with physical disabilities.“The world profoundly needs relief from the disabilities imposed by today’s nonexistent or broken technologies. We must continually strive towards a technological future in which disability is no longer a common life experience,” says Herr. “I am thrilled that the Yang Center for Bionics will help to measurably improve the human experience for so many.”

Boyden, who is a renowned creator of tools to analyze and control the brain, will play a key role in merging bionics technologies with the nervous system. “The Yang Center for Bionics will be a research center unlike any other in the world,” he says. “A deep understanding of complex biological systems, coupled with rapid advances in human-machine bionic interfaces, mean we will soon have the capability to offer entirely new strategies for individuals who experience disability. It is an honor to be part of the center’s founding team.”

Center priorities

In its first four years, the K. Lisa Yang Center for Bionics will focus on developing and testing three bionic technologies: 

  • digital nervous system, to eliminate movement disorders caused by spinal cord injuries using computer-controlled muscle activations to regulate limb movements while simultaneously stimulating spinal cord repair;
  • brain-controlled limb exoskeletons, to assist weak muscles and enable natural movement for people affected by stroke or musculoskeletal disorders; and
  • bionic limb reconstruction, to restore natural, brain-controlled movements as well as the sensation of touch and proprioception (awareness of position and movement) from bionic limbs.

A fourth priority will be developing a mobile delivery system to ensure patients in medically underserved communities have access to prosthetic limb services. Investigators will field-test a system that uses a mobile clinic to conduct the medical imaging needed to design personalized, comfortable prosthetic limbs and to fit the prostheses to patients where they live. Investigators plan to initially bring this mobile delivery system to Sierra Leone, where thousands of people suffered amputations during the country’s 11-year civil war. While the population of persons with amputation continues to increase each year in Sierra Leone, today less than 10 percent of persons in need benefit from functional prostheses. Through the mobile delivery system, a key center objective is to scale up production and access of functional limb prostheses for Sierra Leoneans in dire need.

“The mobile prosthetics service fueled by the K. Lisa Yang Center for Bionics at MIT is an innovative solution to a global problem,” says Julius Maada Bio, president of Sierra Leone. “I am proud that Sierra Leone will be the first site for deploying this state-of-the-art digital design and fabrication process. As leader of a government that promotes innovative technologies and prioritizes human capital development, I am overjoyed that this pilot project will give Sierra Leoneans (especially in rural areas) access to quality limb prostheses and thus improve their quality of life.”

Together, Herr and Boyden will launch research at the bionics center with three other MIT faculty: assistant professor of media arts and sciences Canan Dagdeviren, Walter A. Rosenblith Professor of Cognitive Neuroscience Nancy Kanwisher, and David H. Koch (1962) Institute Professor Robert Langer. They will work closely with three clinical collaborators at Harvard Medical School: Marco Ferrone, an orthopedic surgeon; Matthew Carty, a plastic surgeon; and Nancy Oriol, Faculty Associate Dean for Community Engagement in Medical Education.

“Lisa Yang and I share a vision for a future in which each and every person in the world has the right to live without a debilitating disability if they so choose,” adds Herr. “The Yang Center will be a potent catalyst for true innovation and impact in the bionics space, and I am overjoyed to work with my colleagues at MIT, and our accomplished clinical partners at Harvard, to make important steps forward to help realize this vision.”

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://news.mit.edu/2021/new-bionics-center-established-mit-24-million-gift-0923

Continue Reading

Biotechnology

New bionics center established at MIT with $24 million gift

Published

on

A deepening understanding of the brain has created unprecedented opportunities to alleviate the challenges posed by disability. Scientists and engineers are taking design cues from biology itself to create revolutionary technologies that restore the function of bodies affected by injury, aging, or disease — from prosthetic limbs that effortlessly navigate tricky terrain to digital nervous systems that move the body after a spinal cord injury.

With the establishment of the new K. Lisa Yang Center for Bionics, MIT is pushing forward the development and deployment of enabling technologies that communicate directly with the nervous system to mitigate a broad range of disabilities. The center’s scientists, clinicians, and engineers will work together to create, test, and disseminate bionic technologies that integrate with both the body and mind.

The center is funded by a $24 million gift to MIT’s McGovern Institute for Brain Research from philanthropist Lisa Yang, a former investment banker committed to advocacy for individuals with visible and invisible disabilities. Her previous gifts to MIT have also enabled the establishment of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics in Neuroscience, Hock E. Tan and K. Lisa Yang Center for Autism Research, Y. Eva Tan Professorship in Neurotechnology, and the endowed K. Lisa Yang Post-Baccalaureate Program.

“The K. Lisa Yang Center for Bionics will provide a dynamic hub for scientists, engineers, and designers across MIT to work together on revolutionary answers to the challenges of disability,” says MIT President L. Rafael Reif. “With this visionary gift, Lisa Yang is unleashing a powerful collaborative strategy that will have broad impact across a large spectrum of human conditions — and she is sending a bright signal to the world that the lives of individuals who experience disability matter deeply.”

Video thumbnail Play video

“K. Lisa Yang Center for Bionics”
Video by Jimmy Day/MIT Media Lab

An interdisciplinary approach

To develop prosthetic limbs that move as the brain commands or optical devices that bypass an injured spinal cord to stimulate muscles, bionic developers must integrate knowledge from a diverse array of fields — from robotics and artificial intelligence to surgery, biomechanics, and design. The K. Lisa Yang Center for Bionics will be deeply interdisciplinary, uniting experts from three MIT schools: Science, Engineering, and Architecture and Planning. With clinical and surgical collaborators at Harvard Medical School, the center will ensure that research advances are tested rapidly and reach people in need, including those in traditionally underserved communities.

To support ongoing efforts to move toward a future without disability, the center will also provide four endowed fellowships for MIT graduate students working in bionics or other research areas focused on improving the lives of individuals who experience disability.

“I am thrilled to support MIT on this major research effort to enable powerful new solutions that improve the quality of life for individuals who experience disability,” says Yang. “This new commitment extends my philanthropic investment into the realm of physical disabilities, and I look forward to the center’s positive impact on countless lives, here in the U.S. and abroad.”

The center will be led by Hugh Herr, a professor of media arts and sciences at MIT’s Media Lab, and Ed Boyden, the Y. Eva Tan Professor of Neurotechnology at MIT, a professor of biological engineering, brain and cognitive sciences, and media arts and sciences, and an investigator at MIT’s McGovern Institute and the Howard Hughes Medical Institute.

A double amputee himself, Herr is a pioneer in the development of bionic limbs to improve mobility for those with physical disabilities.“The world profoundly needs relief from the disabilities imposed by today’s nonexistent or broken technologies. We must continually strive towards a technological future in which disability is no longer a common life experience,” says Herr. “I am thrilled that the Yang Center for Bionics will help to measurably improve the human experience for so many.”

Boyden, who is a renowned creator of tools to analyze and control the brain, will play a key role in merging bionics technologies with the nervous system. “The Yang Center for Bionics will be a research center unlike any other in the world,” he says. “A deep understanding of complex biological systems, coupled with rapid advances in human-machine bionic interfaces, mean we will soon have the capability to offer entirely new strategies for individuals who experience disability. It is an honor to be part of the center’s founding team.”

Center priorities

In its first four years, the K. Lisa Yang Center for Bionics will focus on developing and testing three bionic technologies: 

  • digital nervous system, to eliminate movement disorders caused by spinal cord injuries using computer-controlled muscle activations to regulate limb movements while simultaneously stimulating spinal cord repair;
  • brain-controlled limb exoskeletons, to assist weak muscles and enable natural movement for people affected by stroke or musculoskeletal disorders; and
  • bionic limb reconstruction, to restore natural, brain-controlled movements as well as the sensation of touch and proprioception (awareness of position and movement) from bionic limbs.

A fourth priority will be developing a mobile delivery system to ensure patients in medically underserved communities have access to prosthetic limb services. Investigators will field-test a system that uses a mobile clinic to conduct the medical imaging needed to design personalized, comfortable prosthetic limbs and to fit the prostheses to patients where they live. Investigators plan to initially bring this mobile delivery system to Sierra Leone, where thousands of people suffered amputations during the country’s 11-year civil war. While the population of persons with amputation continues to increase each year in Sierra Leone, today less than 10 percent of persons in need benefit from functional prostheses. Through the mobile delivery system, a key center objective is to scale up production and access of functional limb prostheses for Sierra Leoneans in dire need.

“The mobile prosthetics service fueled by the K. Lisa Yang Center for Bionics at MIT is an innovative solution to a global problem,” says Julius Maada Bio, president of Sierra Leone. “I am proud that Sierra Leone will be the first site for deploying this state-of-the-art digital design and fabrication process. As leader of a government that promotes innovative technologies and prioritizes human capital development, I am overjoyed that this pilot project will give Sierra Leoneans (especially in rural areas) access to quality limb prostheses and thus improve their quality of life.”

Together, Herr and Boyden will launch research at the bionics center with three other MIT faculty: assistant professor of media arts and sciences Canan Dagdeviren, Walter A. Rosenblith Professor of Cognitive Neuroscience Nancy Kanwisher, and David H. Koch (1962) Institute Professor Robert Langer. They will work closely with three clinical collaborators at Harvard Medical School: Marco Ferrone, an orthopedic surgeon; Matthew Carty, a plastic surgeon; and Nancy Oriol, Faculty Associate Dean for Community Engagement in Medical Education.

“Lisa Yang and I share a vision for a future in which each and every person in the world has the right to live without a debilitating disability if they so choose,” adds Herr. “The Yang Center will be a potent catalyst for true innovation and impact in the bionics space, and I am overjoyed to work with my colleagues at MIT, and our accomplished clinical partners at Harvard, to make important steps forward to help realize this vision.”

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://news.mit.edu/2021/new-bionics-center-established-mit-24-million-gift-0923

Continue Reading

Artificial Intelligence

The next healthcare revolution will have AI at its center

Published

on

The global pandemic has heightened our understanding and sense of importance of our own health and the fragility of healthcare systems around the world. We’ve all come to realize how archaic many of our health processes are, and that, if we really want to, we can move at lightning speed. This is already leading to a massive acceleration in both the investment and application of artificial intelligence in the health and medical ecosystems.

Modern medicine in the 20th century benefited from unprec­edented scientific breakthroughs, resulting in improvements in every as­pect of healthcare. As a result, human life expectancy increased from 31 years in 1900 to 72 years in 2017. Today, I believe we are on the cusp of another healthcare revolution — one driven by artificial intelligence (AI). Advances in AI will usher in the era of modern medicine in truth.

Over the coming decades, we can expect medical diagnosis to evolve from an AI tool that provides analysis of options to an AI assistant that recommends treatments.

Digitization enables powerful AI

The healthcare sector is seeing massive digitization of everything from patient records and radiology data to wearable computing and multiomics. This will redefine healthcare as a data-driven industry, and when that happens, it will leverage the power of AI — its ability to continuously improve with more data.

When there is enough data, AI can do a much more accurate job of diagnosis and treatment than human doctors by absorbing and checking billions of cases and outcomes. AI can take into account everyone’s data to personalize treatment accordingly, or keep up with a massive number of new drugs, treatments and studies. Doing all of this well is beyond human capabilities.

AI-powered diagnosis

I anticipate diagnostic AI will surpass all but the best doctors in the next 20 years. Studies have shown that AI trained on sizable data can outperform physicians in several areas of medical diagnosis regarding brain tumors, eye disease, breast cancer, skin cancer and lung cancer. Further trials are needed, but as these technologies are deployed and more data is gathered, the AI stands to outclass doctors.

We will eventually see diagnostic AI for general practitioners, one disease at a time, to gradually cover all diagnoses. Over time, AI may become capable of acting as your general practitioner or family doctor.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://techcrunch.com/2021/09/20/the-next-healthcare-revolution-will-have-ai-at-its-center/

Continue Reading

Biotechnology

Research collaboration puts climate-resilient crops in sight

Published

on

Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

Crops in trouble

Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

Solving complex problems across disciplines

Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology

“A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

Getting inside gene regulatory networks

Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

“The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

Alison Gold is a student in MIT’s Graduate Program in Science Writing.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://news.mit.edu/2021/interdisciplinary-research-climate-resilient-crops-0917

Continue Reading
Esports2 days ago

Here are all of CS:GO’s Operation Riptide skins

Esports2 days ago

Valve reveals CS:GO Operation Riptide, featuring private queue, short competitive games, new deathmatch modes, and more

Esports4 days ago

Clash Royale League World Finals 2021 will take place in December with a $1,020,000 prize pool

Esports1 day ago

How to complete all week one missions in Operation Riptide

Esports1 day ago

How to start a Private Queue in CS:GO

Cyber Security5 days ago

KrebsonSecurity Reported That TTEC Hit With Ransomware Attack

Esports3 days ago

All Fashion Week Timed Research, Finding Your Voice Special Research, and event-exclusive Field Research tasks and rewards in Pokémon Go

AR/VR4 days ago

The VR Job Hub: First Contact Entertainment, SyncVR Medical & University of Westminster

Esports4 days ago

Karmine Corp. avoid reverse sweep vs. Fnatic Rising, set record as first team to win back-to-back EU Masters championships

Esports2 days ago

Pokémon UNITE APK and OBB download links for Android

Esports1 day ago

CS:GO Riptide Case: Full List of New Skins

Esports2 days ago

Some players unable to claim Pokémon UNITE mobile pre-registration rewards due to new error

Esports4 days ago

nexa: “We worked really hard to get back into the shape we were in before the player break”

Esports4 days ago

Gambit Esports defeat Envy 3-0 in VCT Masters Berlin Grand Finals

Esports4 days ago

Team Anarchy and STMN Esports qualify for CoD: Mobile World Championship Finals from Europe

Covid193 days ago

Fintech Apps Sees a Surge in Downloads Amidst the Pandemic

AI5 days ago

Coinbase Secures Another Millionaire Deal With the US Government to Let Them Use Its Blockchain Analytics Software

Energy1 day ago

Carbon Nanotubes Market size worth $ 20.31 Billion, Globally, by 2028 at 17.27% CAGR: Verified Market Research®

Energy5 days ago

Johnson Controls Partners with Dubai Silicon Oasis Authority to Power Rochester Institute of Technology – Dubai

Automotive5 days ago

Future Alfa Romeo Models To Have ‘As Few Screens As Possible’

Trending