Zephyrnet Logo

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry

Date:

Home > Press > Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry

The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)
The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)

Abstract:
Developing catalysts for sustainable fuel and chemical production requires a kind of Goldilocks Effect – some catalysts are too ineffective while others are too uneconomical. Catalyst testing also takes a lot of time and resources. New breakthroughs in computational quantum chemistry, however, hold promise for discovering catalysts that are “just right” and thousands of times faster than standard approaches.

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry


Pittsburgh, PA | Posted on August 6th, 2020

University of Pittsburgh Associate Professor John A. Keith and his lab group at the Swanson School of Engineering are using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are “too slow” or “too expensive”, far more thoroughly and quickly than was considered possible a few years ago. Keith is also the Richard King Mellon Faculty Fellow in Energy in the Swanson School’s Department of Chemical and Petroleum Engineering.

The Keith Group’s research compilation, “Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts (DOI: 10.1149.2/2.F09202IF),” was featured this month in Interface, a quarterly magazine of The Electrochemical Society.

“For decades, catalyst development was the result of trial and error – years-long development and testing in the lab, giving us a basic understanding of how catalytic processes work. Today, computational modeling provides us with new insight into these reactions at the molecular level,” Keith explained. “Most exciting however is computational quantum chemistry, which can simulate the structures and dynamics of many atoms at a time. Coupled with the growing field of machine learning, we can more quickly and precisely predict and simulate catalytic models.”

In the article, Keith explained a three-pronged approach for predicting novel electrocatalysts: 1) analyzing hypothetical reaction paths; 2) predicting ideal electrochemical environments; and 3) high-throughput screening powered by alchemical perturbation density functional theory and machine learning. The article explains how these approaches can transform how engineers and scientists develop electrocatalysts needed for society.

“These emerging computational methods can allow researchers to be more than a thousand times as effective at discovering new systems compared to standard protocols,” Keith said. “For centuries chemistry and materials science relied on traditional Edisonian models of laboratory exploration, which bring far more failures than successes and thus a lot of wasted time and resources. Traditional computational quantum chemistry has accelerated these efforts, but the newest methods supercharge them. This helps researchers better pinpoint the undiscovered catalysts society desperately needs for a sustainable future.”

###

About John Keith

Dr. Keith is an associate professor and R. K. Mellon Faculty Fellow in Energy in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. He obtained a BA degree from Wesleyan University (2001) and a PhD from Caltech (2007). He was an Alexander von Humboldt postdoctoral fellow at the University of Ulm (2007-2010) and later an associate research scholar at Princeton University (2010-2013). Keith is an expert in applying a wide range of computational quantum chemistry methods to understand molecular scale phenomena across broad areas of science and engineering. He has more than 65 research publications and was the recipient of a U.S. National Science Foundation CAREER award. From 2019-2020, he was funded by the U.S. and Luxembourg science foundations as a visiting researcher at the University of Luxembourg, where he studied state of the art chemical physics and atomistic machine learning methods.

####

For more information, please click here

Contacts:
Paul Kovach
412-624-0265

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Chemistry

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Possible Futures

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Discoveries

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Announcements

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Quantum nanoscience

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56283

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?