Connect with us

Cleantech

Study proves bits of DNA in seawater correlate to the weight of netted fish, say researchers

Avatar

Published

on

New tool will help census oceans from surface to seafloor, monitor fish, track shifting marine life due to climate change, around coral reefs, aquaculture or wind farms, oil rigs, and more

Humanity is seemingly a step closer to answering one of the most ancient of questions – “how many fish in the sea?” – thanks to research that appears to show that the amount of fish DNA collected in a water sample closely corresponds to kilos of fish captured in a trawl with nets.

Monmouth University student Skyler Post stores water and eDNA samples.

The new study reports that floating bits of DNA found in small water samples reveal the relative biomass of fish in the sea roughly as well as a “gold standard” US state government trawl with nets.

The researchers drew seawater samples during New Jersey government fish trawls and tested the water for fish DNA. Analysis of the water was able to reveal the relative abundance of fish with a 70% match in results between the two sampling methods. In addition to the great concordance between methods, the study found that each sampling method yielded information missed by the other.

While environmental DNA (“eDNA”) has been proven before as a reliable way to determine the variety of fish in an area of water, the new study is the first to show that bits of eDNA floating in seawater also disclose the relative abundance of the species swimming through it.

Published by the prestigious ICES Journal of Marine Science, the paper certifies “fishing for DNA” as an inexpensive, harmless complement to nets, acoustics and other established ways to monitor the health of fish stocks and/or the shifting diversity, distribution and abundance of aquatic life.

The paper, a collaboration between The Rockefeller University, Monmouth University, and the New Jersey Bureau of Marine Fisheries, says the information about the diversity and relative abundance of fish available in a one-litre sample is comparable to a 66 million litre trawl sweep, enough seawater to fill a football stadium to the top of the goalposts.

During four voyages by the New Jersey Ocean Trawl Survey in 2019 aboard the research vessel “Sea Wolf,” scientists led by Dr. Mark Stoeckle, Senior Research Associate at The Rockefeller University Program for the Human Environment, drew one-litre pop-bottle sized water samples from various depths just before the trawler’s nets were lowered.

sorting table

Implications for fisheries conservation
The finding has profound implications for improving global fisheries management and has led to early proposals for a “Great American Fish Count” in rivers and coastal waters, aided by millions of citizen scientists, comparable to Audubon’s Great Backyard Bird Counts.

Fish and other organisms shed DNA like dandruff, Dr. Stoeckle said, leaving an invisible trail wherever they swim. This environmental DNA can be skin cells, droppings, urine, eggs, and other biological residues that last in the ocean for a few days.

The eDNA process is described as straightforward and extremely inexpensive compared with traditional marine life monitoring methods, which involve ships with large crews and hand counts.

Co-author Zachary Charlop-Powers at The Rockefeller University, lead developer of the software used in the DNA analyses, said that eDNA testing involves collecting and filtering a water sample, extracting and sequencing the DNA in a laboratory, then matching the results found in an online DNA reference library.

“The bioinformatic tools used by the team are the same ‘barcode’ analysis pipelines commonly used by microbiologists but were adapted for the study of marine vertebrates.”

He added that the year of sampling and DNA extraction required an investment of just $12,000, exclusive of salaries.

“The applications of environmental DNA in the marine realm are vast,” said Dr Stoeckle, a Harvard-educated MD who helped develop DNA “barcoding,” the identification of species from a small region of the animal’s DNA sequence.

“eDNA offers a low-cost way to monitor the effectiveness of a marine protected area, for example, or whether efforts to restore a coral reef are succeeding. It could reveal the ecological effects of marine industrial activities, including offshore wind farms, oil and gas rigs, and commercial and recreational fishing.”

Adds Dr. Stoeckle: “To put this in perspective, if we thought of a trawl as a full medical CAT or MRI scan, then eDNA can be thought of as a pocket ultrasound–it can be carried and used anywhere in the hospital, without the time and expense of scheduling a full-scale exam. And eDNA surveys will become better and more informative every year as the technique improves and the DNA reference library grows.”

Says co-author Dr. Jason Adolf, Endowed Associate Professor of Marine Science, Monmouth University: “eDNA could also be used to identify life in ocean regions hard to access with trawls, such as very rocky areas, or places too deep or too shallow.”

Monmouth co-author Dr. Keith J. Dunton, an expert on endangered fish species, notes that the results are promising for rare as well as common fish species.

“eDNA along with other technologies like acoustic telemetry offers a sensitive, non-extractive way to monitor declines and revivals of rare, threatened, and endangered species,” he says. “We do not have to put them through stressful capturing to know that they are there.”

Trawl surveys, the main tool used to monitor fish populations, have carefully established protocols and yield rich information but are costly, time-consuming, and require special equipment and fish identification experts. Due to the crew size needed, such trawls have been limited recently by COVID-19.

The New Jersey surveys every season involve deploying a bottom trawl, similar to that used in commercial fishing, behind a vessel over a predetermined pattern. The catches in the nets are hauled up and sorted on tables where the weight of each identified species is recorded. Between 30 and 40 trawls are done about every three months.

To compare the trawl survey to the eDNA survey, one-litre water samples were collected at the surface and at depth before the trawls were done. However, samples were only taken before every fourth trawl. When the data from the two surveys were analyzed, the eDNA survey found most of the same fish species, and also found species not captured in the trawl. And it did so with only one-quarter of the samples taken and a fraction of the effort involved.

The paper says most (70% to 87%) species detected by trawl in a given month were also detected by eDNA, and vice versa, including nearly all (92% to 100%) abundant species. Conversely, most dropouts were relatively rare taxa.

In other comparisons, monthly eDNA species “reads” correlated with the monthly weight, or biomass, of that species recovered in the trawl.

The eDNA reporting “largely concorded with monthly trawl estimates of marine fish species richness, composition, seasonality, and relative abundance,” the paper says.

“It’s important to understand that the results of both methods are true, and complementary,” said Stoeckle. “They catch a lot of overlapping, concordant information as well as some information unique to each method.”

Gregory Hinks of the New Jersey Department of Environmental Protection, who co-authored the paper with Bureau of Marine Fisheries colleague Stacy M. VanMorter, adds: “During times like COVID when it is unsafe to conduct surveys with large crews, the eDNA method might allow us still to maintain some continuity in our surveys. In any case, piggybacking eDNA onto an existing survey may eventually provide an affordable way to improve marine fish stock assessment.”

Future research
The new paper lays out further research required, such as better calibration of eDNA “reads” to fish body mass – how much DNA is shed by 1,000 anchovies weighing 1 kilo, for example, compared with a one kilo sized sea bass? And how to account for eDNA reads that may be the result of injury due to a predator attack.

Since collecting water for eDNA is so quick and easy to do, research or oceanographic vessels and commercial and recreational vessels can collect samples as they travel from place to place. Even drones could be deployed to collect water samples.

And with the benefit of additional studies in marine and freshwaters, estimates of animal numbers using eDNA will continue to improve as well as the DNA reference data banks that allow reliable identification of aquatic species.

eDNA opens the way to surveys of unprecedented value, quality, and affordability, says Jesse Ausubel, Director of The Rockefeller University’s Program for the Human Environment, who developed and helped oversee the first international Census of Marine Life, a decadal (2000-2010) collaboration of about 2,700 scientists in 80 countries.

“eDNA makes the ocean a sea of biological information,” he says. “In the USA we could organize a Great American Fish Count in which millions of citizen scientists might collect water for eDNA testing spanning all our waters. Globally, the incipient UN Decade of the Oceans could include a Great Global Fish Count sampling from sea floor to sea surface and near shore to mid-ocean all during a single day or week.”

Tony MacDonald, Director of the Monmouth University Urban Coast Institute, said: “Our institute and scientists were excited to support this innovative work, one of several partnerships in recent years between UCI and The Rockefeller University Program for the Human Environment.”

“We hope to have the opportunity to continue and expand our collaboration with New Jersey’s Department of Environmental Protection Marine Fisheries and the National Oceanic and Atmospheric Administration on future fish trawls to further advance eDNA research.”

Source: https://envirotecmagazine.com/2020/11/30/study-proves-bits-of-dna-in-seawater-correlate-to-the-weight-of-netted-fish-say-researchers/

Cleantech

The UK’s Cheapest Electric Vehicles & Fastest On Road Trips

Avatar

Published

on

Cars

Published on January 21st, 2021 | by Johnna Crider

January 21st, 2021 by Johnna Crider 


Leasing Options, a leasing service that has been serving the UK for over 30 years, has shared its findings on the fastest and cheapest electric vehicles (EVs) in the UK. In an EV range race from John O’Groats to Land’s End, Tesla was the speediest brand. Some key findings from the race are as follows:

  • The Tesla Model S and Model X tied at 1st place finishing with a total time of 16 hours and 18 minutes.
  • The Tesla Model 3 finished at 3rd place and was over 40 minutes faster than the Audi e-tron that came in 4th.
  • The Renault Zoe is the cheapest, and the driver paid only £53.61 to make the 837-mile trip.
  • The Tesla Model 3 was the 2nd cheapest at £58.40 for the trip, 30p cheaper than its bigger brothers.
  • Volkswagen’s e-Golf is the most expensive, costing £35 more than the winning Renault Zoe, with a total of £89.01.

EV Performance

Speed

Tesla reigns king in terms of speed. The brand dominated the time trial and took all three podium positions. The Model S and Model X finished in first place (tied), with a total time of 16 hours and 18 minutes. The Model 3 finished a bit slower but 40 minutes faster than the Audi e-tron, which came in at 4th place.

Compared with the Jaguar I-PACE, Audi demonstrated the importance of a fast-charing battery. The vehicle took frequent stops but was able to get back on the road in under 30 minutes. In comparison, the I-PACE took 45 minutes for its recharge times.

The BMW i3 took 6th place with a time of 18 hours and 48 minutes. It beat the Renault Zoe by around 30 minutes. The EV that finished last was the VW e-Golf. Its time was 20 hours and 36 minutes.

Cost

If the race didn’t factor in the speed and only focused on cost, the Renault Zoe would be the clear winner. It cost the driver only £53.61 to make the 837-mile trip. Following directly behind the Renault are the three Teslas, led by the Model 3.

Slowest & Most Expensive

The EV that was both slowest and most expensive was the VW e-Golf. The trip cost the driver £89.01 and the e-Golf was the last vehicle to finish, 43 minutes slower than the second slowest model, the Nissan LEAF. The Audi e-tron was the next most expensive. The driver had to pay around £86.08 for the trip.


Methodology

Leasing Options had to take many factors into account to plan this epic race, starting with the route, which was planned out using the AA’s route planner. Following that, the organizers worked out the initial cost of charging the car’s batteries prior to the race. These numbers were calculated using guidance from an Auto Express report that detailed the cost per kWh.

The next part was determining how far each vehicle could go before needing to recharge. They used real-life range from the Electric Vehicle Database. Once they had the numbers, they took the fast charge times and miles from the Electric Vehicle Database and plotted those onto the map to pinpoint where each car would need to recharge again. That was repeated until that car crossed the finish line.

Finally, they crunched the numbers to figure out how much each recharge would have cost with the aid of Zap Map’s cost calculator and Auto Express. After this, they totaled up all of the times and costs to give the final figures above. One thing Leasing Options noted in its blog was that these figures could differ slightly from actual times and costs even though they have been calculated as accurately as possible.

The Real Winners Are Those Switching To EVs From Fossil Fuel Vehicles

Although this was a fun race in the UK to determine which EVs were faster and cheaper for such a race, I want to point out that not everyone races vehicles. Many simply use vehicles to go from points A to B and maybe C, D, and sometimes E, and so on.

The real winners are those making the switch to electric vehicles from fossil fuel vehicles. Electric vehicles are more fun, cleaner, and guilt free.

16 hours is notably different from 20 hours for a road trip, but any of these vehicles could be a fun, pleasant option for an electric road trip.

All photos provided by Leasing Options and used with permission.  
 


 


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica member, supporter, or ambassador — or a patron on Patreon.

Sign up for our free daily newsletter to never miss a story.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.


Latest CleanTech Talk Episode


Tags: audi e-tron, BMW i3, EV prices, EV Range, Jaguar I-Pace, Leasing Options, MG ZS, MG ZS EV, Nissan Leaf, race, renault zoe, Tesla, Tesla Model 3, Tesla Model S, Tesla Model X, UK, volkswagen, Volkswagen e-Golf


About the Author

Johnna Crider is a Baton Rouge artist, gem and mineral collector, member of the International Gem Society, and a Tesla shareholder who believes in Elon Musk and Tesla. Elon Musk advised her in 2018 to “Believe in Good.” Tesla is one of many good things to believe in. You can find Johnna on Twitter at all hours of the day & night.



Source: https://cleantechnica.com/2021/01/21/the-uks-cheapest-electric-vehicles-fastest-on-road-trips/

Continue Reading

Cleantech

After 4 Decades of Solar Photovoltaic Research, NREL Is Just Getting Started

Avatar

Published

on

Clean Power

Published on January 20th, 2021 | by U.S. Department of Energy

January 20th, 2021 by U.S. Department of Energy 


When the Solar Energy Research Institute was first envisioned, the United States was only months out of the oil embargo crisis of 1973–74. The new research institute was a response to this crisis and part of a national effort to find new, more reliable sources of energy.

In the 43 years since, the Solar Energy Research Institute — now known as the National Renewable Energy Laboratory (NREL) — has been a driving force in the development of solar photovoltaic (PV) energy.

From $76 per watt in 1977, the cost of silicon solar cells has fallen to $0.20 per watt in 2020. Electricity from solar energy is cost-competitive with most other sources, and about 35% of new electricity generation each year comes from new PV systems. But NREL researchers are not stopping here. They envision a future where PV is everywhere. See why in this new video from NREL.

Since the 1970s, the National Renewable Energy Laboratory has helped develop solar photovoltaics (PV) from a niche technology to our fastest-growing source of energy. But there’s still more work to be done. See how we’re creating a future that includes PV everywhere. Learn more at Photovoltaic (PV) Research.

Courtesy of NREL. 
 


 


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica member, supporter, or ambassador — or a patron on Patreon.

Sign up for our free daily newsletter to never miss a story.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.


Latest CleanTech Talk Episode


Tags: Department Of Energy (DOE), National Renewable Energy Laboratory (NREL), oil embargo crisis, Solar Energy Research Institute, US Department of Energy (DOE)


About the Author

U.S. Department of Energy The mission of the U.S. Energy Department is to ensure America’s security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. Learn more.



Source: https://cleantechnica.com/2021/01/20/after-4-decades-of-solar-photovoltaic-research-nrel-is-just-getting-started/

Continue Reading

Cleantech

Exclusive Interview: Mayor of America’s 10th Largest City on Benefits & Challenges of Electrification

Avatar

Published

on

Buildings

Published on January 20th, 2021 | by Joe Wachunas

January 20th, 2021 by Joe Wachunas 


I’ve been following San Jose’s Mayor, Sam Liccardo, for some time. In 2019, I heard from environmentalists in California about how he was instrumental in getting all-electric building legislation through the city council of the nation’s 10th largest city. I’ve also been tracking San Jose’s nation-leading efforts in clean electricity and electric vehicles (with over 20% of new cars being EVs). I’ve wanted to know the secret to this city’s sauce and look for strategies and takeaways that the rest of our country might follow.

I was thus tickled pink when I had the opportunity to sit down with Mayor Liccardo and ask him about the ways in which his city was leading the nation, specifically on transportation and building electrification. And without spoiling the interview you’re about to read, I have to say our talk was quite interesting. Rather than unabashedly embracing the electrify everything movement his city is spearheading, he was more measured and objective in talking about both the opportunities but also the challenges of moving away from fossil fuels at the city level. Perhaps I got a taste of why he is so popular and won reelection in 2018 with 75% of the vote. His city is cutting edge and leading the nation in electrification but he’s measured, clear eyed, and realistic about the challenges of getting off fossils.

Mayor Sam Liccardo, courtesy of the city of San Jose

Mayor Liccardo, thanks for taking the time. You’re the mayor of the 10th largest city in the US and leading the charge on electrification both in buildings and transportation. Tell us, how do cities play a unique role in transportation and building electrification that other levels of government can’t or don’t?

Electrification is a great opportunity for us, certainly with buildings but also with transportation infrastructure since that’s the primary source of greenhouse gas emissions in most of our cities. Moving our automobiles to the grid is crucial and San Jose is the leading city in the country on electric vehicles. We need to do it all and the push is on in all sectors, whether it’s in new building codes or electrifying train systems. In our case, we are currently electrifying a train which was built during the presidency of Abraham Lincoln.

At the same time we need to make sure we are greening our grid. Here in San Jose that really happened dramatically through the Community Choice Energy Program a couple of years ago, we were the largest city in the country to do that. Starting in January, 92% of our power will be drawn from non GHG emitting sources so it’s either hydro or renewables and we’ll be pushing it towards 100%.

It’s all downhill from here. How do I top an interview with one of the coolest mayors in the country?

Let’s talk about buildings a little bit. San Jose is the biggest city to electrify first residential buildings and now multifamily and commercial. What advice would you give to other cities looking into electrification?

I know there are a lot of different situations in different cities, some cities have investor owned utilities, some have municipal owned utilities, some have cooperatives. Whatever the relationship might be, it’s important that there is a really clear commitment to green the grid first because pushing folks to electricity if it’s coal fired doesn’t do any good.

The second issue is to really grapple with the perils of electrification and to be very clear and honest about the limitations. The limitations are much more severe down here in San Jose than they are in your neck of the woods (Portland, Oregon) because of all the problems we have with our infrastructure. PG&E and its lack of investment in maintenance and capital replacement, as well as all the impacts of climate change and wildfire and so forth that are causing everything from power safety shutoffs to having our independent system operator, which operates the grid for the entire state, literally browning out during high usage periods in the summertime, which is happening occasionally. Then we’re also seeing blackouts resulting from failing infrastructure so we’ve got a real problem with the grid and we need to be honest about that. Residents are understandably leery about us pushing them towards a solution that is not reliable and is not terribly resilient.

So the message is to be careful about the problems of the grid. But San Jose is still pushing for an all-electric future, so how do you balance that?

Yeah, we are, and it’s a really hard balance. It helps if you’re starting with new construction, because obviously that’s a small percentage of the built environment that you’re dealing with, so it helps to start there. We had to take some baby steps at first. We actually started this about a year ago with residential and some commercial, but we were hesitant about going to high rise because of some limitations around technology and what we were hearing from builders. So we engaged in a lot of outreach to see how it could be done and be feasible and be at least the same cost or lower. Because we’re blessed to have a very proactive private sector around us, we think we found good solutions that everyone can live with.

Then the other thing we had to do bluntly is we had to hedge our bets to some extent. For example, we made exceptions for hospitals, for data centers. If they’re using distributed energy which meets a certain standard around having zero emissions for NOx and SOx and particulates, then we’ll allow it (them to use natural gas). Not all environmentalists embraced this strategy because it still relies on some natural gas, but if you’re running a data center or you’ve got some industry that is super reliant on a grid that is always going to be up and running, you’ve got to give them options, and just having dirty diesel backups isn’t a very good solution. 

Let’s turn to transportation. San Jose has the highest per capita percentage of EVs in the country — what’s the secret to its success?

Well, have Tesla located next door (laughs). We’ve got a lot of Tesla employees in our city. In truth, there are a lot of different electric cars. I drive a Chevy Volt, my wife drives a Bolt. Like Portland, we’re a city with a relatively well educated population, with a progressive mindset. And people understand it and get it about climate change. It also helps to be in a place where you already have a significant amount of solar deployment because there seems to be a high correlation between those who have solar and those who drive electric vehicles, because we all feel better when we’re drawing the power off our roof. 

How about policies on the city side to promote transportation electrification?

We have been working really hard on the transit piece. We have the largest deployment of electric buses at our airport of any city* (there may be cities that have passed us now since we did that last year). It helps having some local producers here, like Proterra, who’s in the Bay Area. So, we’re working hard on the deployment of electric buses. There is a real constraint there on battery life and charging but we think with supercharging coming onboard that may get around that. For transit agencies, it’s just a problem with longer routes and having buses that just rely on the batteries.

It helps to have some state mandates in place. That’s really important. It forces the investor-owned utilities to make investments — for example, in car charging infrastructure — so you need to have partners at the state level that are willing to push with you.

[*Editor’s note: This is in regards to US cities only, not globally.]

I work with a nonprofit organization called Forth that does transportation electrification. How do NGOs play a role helping cities meet their climate goals?

Yeah, super important. One is to push us cause we’re often not even aware of what’s out there. City Hall can get siloed at times, and it’s really important to have the NGOs who are interfacing more proactively with the innovators. It’s also really important around moving the community. Because what we know about climate change is the most impactful things we can do really involve behavior and behavioral change. And all the great technology in the world is going to help, but it won’t really move the needle like we need.

For example, we’re partnering with some NGOs looking at the parts of the city where there’s not a good enough transit service because of budgetary constraints and asking if we can engage low-income residents in a cooperative model on an electric carsharing pilot. That’s where NGOs are really instrumental, bringing people along who may not speak English, helping them with a technology they may not be familiar with, and hopefully making mobility less expensive for them in the process. 

That brings me to another question: how do electrification and equity go together from where you’re sitting?

I think given the extraordinary capital costs we have ahead to upgrade our grid and deal with the legacy problems we’ve had. You look at gas infrastructure here, for example — we actually had a horrible explosion about ten years ago, a lot of people’s lives were lost in San Bruno. What we know is that consumers are going to be paying more and more and more for infrastructure, even as renewable energy gets cheaper. It’s going to be critically important that we can make these changes in ways that don’t further impact those who are already struggling mightily to pay their utility bills. 

One place to really start is to focus on multifamily housing and seeing how we can dramatically reduce the bills and make multifamily housing more fuel efficient and cost efficient. 

Do you think electrification inherently does that? And is that why San Jose is mandating electrification in multi-family buildings?

It’s certainly cheaper from a construction standpoint. There are competing theories about whether gas or electric prices are going to be rising faster in the long run, and I know it’s going to vary a lot by market given the particular infrastructure in that region. I’m not going to weigh into that debate other than to say — I’m firmly convinced that our future is electric (emphasis mine), so we better be investing dollars and making sure we’ve got a resilient grid. I think this is the greatest challenge for us as we think about all of our sustainability measures — we’ve got to ensure that there is a green dividend for the great majority of residents who can’t afford a Tesla, and I don’t think we’ve done a good enough job of that yet. We’re spending a lot of time thinking about how to do it better, but we haven’t gotten there. 

Is there a particular program you feel like is on the right track?

All of them cost money, the ones that I can think of, so there is no great solution. At a time when we’re literally spending general fund money to feed people who can’t afford food, a lot of these programs are a lot harder to come by. Maybe this is a conversation that is easier to have when we’re not in the middle of a pandemic. I think there is great value in a lot of the utility-sponsored programs that have been focused on education with a small subsidy that helps somebody replace their gas water heater. I think there is great value in that. But it’s hard work and requires an army of trusted community partners. 

What are the next steps for San Jose in the electrification of transportation and buildings?

Certainly retrofits are where lots of folks are focusing now, and we’ve had some experience in that, but costs are challenging. Certainly that is one frontier that is an important one. Let me say there is one other one that we have to pay attention to and it goes back to the grid. We need at the national level a concerted microgrid strategy to enable more distributed generation of power and a more resilient supply. Or else a lot of our efforts will be undermined with the next hurricane, the next earthquake, or the next power safety shutoff if you’re down in California. We know that battery technology is a ways off — it’s still too expensive if you’re looking for storage that is going to last three to four days. There may be some interesting solutions using hydrogen and fuel cells that could be zero emission that are very exciting. But we’ve got to get to that holy grail of distributed generation that is resilient. I know it’s true not just in California but around the country. Read the book called The Grid and it will scare the hell out of you just how bad of shape our grid really is in. We know we got to get to electrification, but we need infrastructure that will be there for us.

I don’t mean to be Debbie downer, this is important work, but we don’t want to save people from one cliff while we’re pushing them off another one. 

Watch the full interview with Mayor Sam Liccardo here

  
 


 


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica member, supporter, or ambassador — or a patron on Patreon.

Sign up for our free daily newsletter to never miss a story.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.


Latest CleanTech Talk Episode


Tags: electric buses, electrify everything, Proterra, Sam Liccardo, San Jose, San Jose clean energy, Tesla


About the Author

Joe Wachunas lives in Portland, Oregon, and works for the nonprofit Forth, which promotes electric transportation. He is also involved with Electrify Now because he believes that electrifying everything, from transportation to homes, is the quickest path to an equitable, clean energy future. And of course, Joe and his family live in an all-electric home and drive an EV.



Source: https://cleantechnica.com/2021/01/20/exclusive-interview-mayor-of-americas-10th-largest-city-on-benefits-challenges-of-electrification/

Continue Reading

Cleantech

Elon Musk, Workaholic Money Maker: “People Tend To Overrate Risk”

Avatar

Published

on

Cars

Published on January 20th, 2021 | by Matt Pressman

January 20th, 2021 by Matt Pressman 


Originally published on EV Annex.

Recently, the über-rich Amazon founder Jeff Bezos got bumped from his #1 spot. As Akshay Sawai writes in Money Control, “The man who wants to put people on Mars has become the richest man on Earth.” Elon Musk’s reaction to becoming the world’s wealthiest man, with a net worth of $195 billion, was typical of him. “How strange,” he tweeted. This was followed by “Well, back to work.”

He’s come a long way from humble beginnings. Musk once confessed, “When my brother and I started our first company, we didn’t rent an apartment. We rented a small office and slept on the couch. We showered at the YMCA. We were so hard up we had only one computer. The website was up during the day, and I was coding at night, seven days a week.”

This trend would continue. Tesla’s CEO is still a notorious workaholic. In 2018, during Model 3 production hell, he often worked 120-hour weeks while sleeping at the Tesla factory. “There were times when I didn’t leave the factory for three or four days — days when I didn’t go outside,” the father of five said. “This has really come at the expense of seeing my kids.”

However, Musk’s advice for a younger generation is more than simply working hard. He’s a believer in taking risks. After all, Elon betting big on an electric car company was pretty bold back in 2004. “People tend to overrate risk,” he said of entrepreneurship. “It’s one thing if you have mortgage to pay and kids to support. … But if you are young and just coming out of college, what do you risk?”

A look at the path Elon Musk travelled to overtake Jeff Bezos for the top spot. (YouTube: Forbes)

Perhaps it’s a good thing to have the world’s richest person championing a global transition to clean energy? According to Ashutosh Pandey at Deutsche Welle, Elon Musk is “essentially being rewarded for trailblazing a path toward a sustainable future — a journey that traditional automakers have also embarked upon, albeit reluctantly, after having postponed the inevitable for years.”

Sure, it’s easy to take cheap shots at the billionaires of the world. But, as Tesla (and Elon’s) fortune grows, there’s at least “one reason [that] must offer a lot of hope to climate activists. It’s that investors are increasingly realizing that a company selling cars that don’t run on polluting fossil fuels is a key piece of the puzzle in combating climate change.” 
 


 


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica member, supporter, or ambassador — or a patron on Patreon.

Sign up for our free daily newsletter to never miss a story.

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.


Latest CleanTech Talk Episode


Tags: Elon Musk, Jeff Bezos, SpaceX, Tesla


About the Author

Matt Pressman is all about Tesla. He’s a TSLA investor, pre-ordered the Model 3, and loves driving the family’s Model S and Model X company cars. As co-founder of EVANNEX, a family business specializing in aftermarket Tesla accessories, he’s served as a contributor/editor of Electric Vehicle University (EVU) and the Owning Model S and Getting Ready for Model 3 books. He writes daily about Tesla and you can follow his work on the EVANNEX blog.



Source: https://cleantechnica.com/2021/01/20/elon-musk-workaholic-money-maker-people-tend-to-overrate-risk/

Continue Reading
Blockchain3 days ago

Buying the Bitcoin Dip: MicroStrategy Scoops $10M Worth of BTC Following $7K Daily Crash

Blockchain3 days ago

Bitcoin Correction Intact While Altcoins Skyrocket: The Crypto Weekly Recap

Blockchain3 days ago

Canadian VR Company Sells $4.2M of Bitcoin Following the Double-Spending FUD

Blockchain3 days ago

MicroStrategy CEO claims to have “thousands” of executives interested in Bitcoin

custom-packet-sniffer-is-a-great-way-to-learn-can.png
Blockchain4 days ago

TA: Ethereum Starts Recovery, Why ETH Could Face Resistance Near $1,250

Amb Crypto3 days ago

Monero, OMG Network, DigiByte Price Analysis: 23 January

Amb Crypto3 days ago

Chainlink Price Analysis: 23 January

Amb Crypto2 days ago

Will range-bound Bitcoin fuel an altcoin rally?

Amb Crypto2 days ago

Bitcoin Price Analysis: 24 January

Amb Crypto4 days ago

Popular analyst prefers altcoins LINK, UNI, others during Bitcoin & Eth’s correction phase

Amb Crypto3 days ago

Bitcoin Cash, Synthetix, Dash Price Analysis: 23 January

Amb Crypto3 days ago

Why has Bitcoin’s brief recovery not been enough

Blockchain4 days ago

Bitcoin Cash Analysis: Strong Support Forming Near $400

Automotive3 days ago

Tesla Powerwalls selected for first 100% solar and battery neighborhood in Australia

Blockchain4 days ago

OIO Holdings Appoints Rudy Lim as CEO of Blockchain Business Subsidiary

SPAC Insiders4 days ago

Virtuoso Acquisition Corp. (VOSOU) Prices Upsized $200M IPO

Amb Crypto3 days ago

Why now is the best time to buy Bitcoin, Ethereum

Amb Crypto3 days ago

Stellar Lumens, Cosmos, Zcash Price Analysis: 23 January

AI2 days ago

Plato had Big Data and AI firmly on his radar

Cyber Security5 days ago

Einstein Healthcare Network Announces August Breach

Trending