Zephyrnet Logo

Silica nanoparticles enhance disease resistance in Arabidopsis plants

Date:

  • 1.

    White, J. C. & Gardea-Torresdey, J. Achieving food security through the very small. Nat. Nanotechnol. 13, 627–629 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Casey, W., Kinrade, S., Knight, C., Rains, D. & Epstein, E. Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ. 27, 51–54 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Ma, J. F. & Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392–397 (2006).

    CAS  Article  Google Scholar 

  • 4.

    Choppin, G. R., Pathak, P. & Thakur, P. Polymerization and complexation behavior of silicic acid: a review. Main Group Met. Chem. 31, 53–72 (2008).

    Article  Google Scholar 

  • 5.

    Bélanger, R. R., Bowen, P. A., Ehret, D. L. & Menzies, J. G. Soluble silicon—its role in crop and disease management of greenhouse crops. Plant Dis. 79, 329–336 (1995).

    Article  Google Scholar 

  • 6.

    Abdel-Haliem, M. E., Hegazy, H. S., Hassan, N. S. & Naguib, D. M. Effect of silica ions and nano silica on rice plants under salinity stress. Ecol. Eng. 99, 282–289 (2017).

    Article  Google Scholar 

  • 7.

    Luyckx, M., Hausman, J.-F., Lutts, S. & Guerriero, G. Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci. 8, 411 (2017).

    Article  Google Scholar 

  • 8.

    Slomberg, D. L. & Schoenfisch, M. H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 46, 10247–10254 (2012).

    CAS  Google Scholar 

  • 9.

    Eichert, T., Kurtz, A., Steiner, U. & Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134, 151–160 (2008).

    CAS  Article  Google Scholar 

  • 10.

    Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10, 257–278 (2016).

    CAS  Article  Google Scholar 

  • 11.

    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  Article  Google Scholar 

  • 12.

    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    CAS  Article  Google Scholar 

  • 13.

    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    CAS  Article  Google Scholar 

  • 14.

    Ryals, J. A. et al. Systemic acquired resistance. Plant Cell 8, 1809–1819 (1996).

    Article  Google Scholar 

  • 15.

    Ross, A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358 (1961).

    CAS  Article  Google Scholar 

  • 16.

    Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    CAS  Article  Google Scholar 

  • 17.

    Mauch, F. et al. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J. 25, 67–77 (2001).

    CAS  Google Scholar 

  • 18.

    Wang, C. et al. Free radicals mediate systemic acquired resistance. Cell Rep. 7, 348–355 (2014).

    Article  CAS  Google Scholar 

  • 19.

    El-Shetehy, M. et al. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal. Behav. 10, e998544 (2015).

    Article  CAS  Google Scholar 

  • 20.

    Louws, F. et al. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis. 85, 481–488 (2001).

    CAS  Article  Google Scholar 

  • 21.

    Romero, A., Kousik, C. & Ritchie, D. Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis. 85, 189–194 (2001).

    CAS  Article  Google Scholar 

  • 22.

    Kim, S. G., Kim, K. W., Park, E. W. & Choi, D. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92, 1095–1103 (2002).

    Article  Google Scholar 

  • 23.

    Wang, M. et al. Role of silicon on plant–pathogen interactions. Front. Plant Sci. 8, 701 (2017).

    Article  Google Scholar 

  • 24.

    Liang, Y., Si, J. & Römheld, V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 167, 797–804 (2005).

    CAS  Article  Google Scholar 

  • 25.

    van Bockhaven, J. et al. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol. 206, 761–773 (2015).

    Article  CAS  Google Scholar 

  • 26.

    Rouhani, M., Samih, M. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F.(Col.: Bruchidae). J. Entomol. Res. 4, 297–305 (2013).

    Google Scholar 

  • 27.

    El-Helaly, A., El-Bendary, H., Abdel-Wahab, A., El-Sheikh, M. & Elnagar, S. The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J. Entomol. Zool. 4, 175–180 (2016).

    Google Scholar 

  • 28.

    Kunkel, B. N., Bent, A. F., Dahlbeck, D., Innes, R. W. & Staskawicz, B. J. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5, 865–875 (1993).

    CAS  Google Scholar 

  • 29.

    Chen, Z., Kloek, A. P., Boch, J., Katagiri, F. & Kunkel, B. N. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol. Plant Microbe Interact. 13, 1312–1321 (2000).

    CAS  Article  Google Scholar 

  • 30.

    Exley, C. A possible mechanism of biological silicification in plants. Front. Plant Sci. 6, 853 (2015).

    Article  Google Scholar 

  • 31.

    Bossert, D. et al. A hydrofluoric acid-free method to dissolve and quantify silica nanoparticles in aqueous and solid matrices. Sci. Rep. 9, 7938 (2019).

    Article  CAS  Google Scholar 

  • 32.

    Schwab, F. & Maceroni, M. A controlled release silica-based nanoparticle composition, method of production and fertilization methods. Patent WO2020212526A1 (2020).

  • 33.

    Ross, A. & Somssich, I. E. A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana. Plant Methods 12, 48 (2016).

    Article  CAS  Google Scholar 

  • 34.

    Sewelam, N., Kazan, K., Hüdig, M., Maurino, V. G. & Schenk, P. M. The AtHSP17. 4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int. J. Mol. Sci. 20, 3201 (2019).

    CAS  Article  Google Scholar 

  • 35.

    An, C. & Mou, Z. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53, 412–428 (2011).

    CAS  Article  Google Scholar 

  • 36.

    Nawrath, C. & Métraux, J.-P. Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393–1404 (1999).

    CAS  Google Scholar 

  • 37.

    Ye, M. et al. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc. Natl Acad. Sci. USA 110, E3631–E3639 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Ziaee, M. & Ganji, Z. Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J. Plant Prot. Res. 56, 250–256 (2016).

    CAS  Article  Google Scholar 

  • 39.

    La, V. H. et al. Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic. Environ. Biotechnol. 60, 31–40 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Krajíčková, A. & Mejstřik, V. The effect of fly ash particles on the plugging of stomata. Environ. Pollut. A 36, 83–93 (1984).

    Article  Google Scholar 

  • 41.

    Burkhardt, J., Basi, S., Pariyar, S. & Hunsche, M. Stomatal penetration by aqueous solutions—an update involving leaf surface particles. New Phytol. 196, 774–787 (2012).

    CAS  Article  Google Scholar 

  • 42.

    Amrullah, D. S. & Junaedi, A. Influence of nano-silica on the growth of rice plant (Oryza sativa L.). Asian J. Agric. Res. 9, 33–37 (2015).

    CAS  Google Scholar 

  • 43.

    Karunakaran, G. et al. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol. 7, 70–77 (2013).

    CAS  Article  Google Scholar 

  • 44.

    Cameron, R. K., Pavia, N. K., Lamb, C. J. & Dixon, R. A. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55, 121–130 (1999).

    CAS  Article  Google Scholar 

  • 45.

    Malamy, J., Carr, J. P., Klessig, D. F. & Raskin, I. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004 (1990).

    CAS  Article  Google Scholar 

  • 46.

    Fauteux, F., Chain, F., Belzile, F., Menzies, J. G. & Bélanger, R. R. The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc. Natl Acad. Sci. USA 103, 17554–17559 (2006).

    CAS  Article  Google Scholar 

  • 47.

    Jiang, N., Fan, X., Lin, W., Wang, G. & Cai, K. Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int. J. Mol. Sci. 20, 761 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Lavers, A. Guidelines on Good Practice for Ground Application of Pesticides (Food and Agriculture Organization of the United Nations, 2001).

  • 49.

    Schreiber, L. Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann. Bot. 95, 1069–1073 (2005).

    Article  Google Scholar 

  • 50.

    Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

    CAS  Article  Google Scholar 

  • 51.

    Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Bourquin, J. et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 30, e1704307 (2018).

    Article  CAS  Google Scholar 

  • 53.

    Mebert, A. M., Baglole, C. J., Desimone, M. F. & Maysinger, D. Nanoengineered silica: properties, applications and toxicity. Food Chem. Toxicol. 109, 753–770 (2017).

    CAS  Article  Google Scholar 

  • 54.

    Chen, Z. et al. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. USA 104, 20131–20136 (2007).

    CAS  Article  Google Scholar 

  • 55.

    El-Shetehy, M. et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants—raw data. Zenodo https://doi.org/10.5281/zenodo.4131137 (2020).

  • 56.

    Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  • 57.

    Stegemeier, J. P. et al. Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environ. Sci. Technol. 49, 8451–8460 (2015).

    CAS  Article  Google Scholar 

  • 58.

    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    CAS  Article  Google Scholar 

  • 59.

    Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 3, 71 (2013).

    Google Scholar 

  • 60.

    Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    CAS  Article  Google Scholar 

  • 61.

    Tomczynska, I., Stumpe, M. & Mauch, F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. Plant J. 95, 187–203 (2018).

    CAS  Article  Google Scholar 

  • 62.

    Joller, C. et al. S-methyl methanethiosulfonate: promising late blight inhibitor or broad range toxin? Pathogens 9, 496 (2020).

  • Source: https://www.nature.com/articles/s41565-020-00812-0

    spot_img

    Latest Intelligence

    spot_img