Zephyrnet Logo

Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads

Date:

  • 1.

    Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Article  Google Scholar 

  • 2.

    Aida, T., Meijer, E. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Koutsopoulos, S., Unsworth, L. D., Nagai, Y. & Zhang, S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl Acad. Sci. USA 106, 4623–4628 (2009).

    CAS  Article  Google Scholar 

  • 5.

    Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Schief, W., Touryan, L., Hall, S. & Vogel, V. Nanoscale topographic instabilities of a phospholipid monolayer. J. Phys. Chem. B 104, 7388–7393 (2000).

    CAS  Article  Google Scholar 

  • 8.

    da Silva, R. M. et al. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat. Commun. 7, 11561 (2016).

    Article  CAS  Google Scholar 

  • 9.

    Wimley, W. C. & Thompson, T. E. Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles. Biochemistry 30, 1702–1709 (1991).

    CAS  Article  Google Scholar 

  • 10.

    Ortony, J. H. et al. Water dynamics from the surface to the interior of a supramolecular nanostructure. J. Am. Chem. Soc. 139, 8915–8921 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Yuan, D., Shi, J., Du, X., Zhou, N. & Xu, B. Supramolecular glycosylation accelerates proteolytic degradation of peptide nanofibrils. J. Am. Chem. Soc. 137, 10092–10095 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128, 1070–1071 (2006).

    CAS  Article  Google Scholar 

  • 13.

    Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).

    CAS  Article  Google Scholar 

  • 15.

    Hashim, P., Bergueiro, J., Meijer, E. & Aida, T. Supramolecular polymerization: a conceptual expansion for innovative materials. Prog. Polym. Sci. 105, 101250 (2020).

    CAS  Article  Google Scholar 

  • 16.

    Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).

    Article  CAS  Google Scholar 

  • 17.

    Tuller, H. L. Ionic conduction in nanocrystalline materials. Solid State Ion. 131, 143–157 (2000).

    CAS  Article  Google Scholar 

  • 18.

    Sherrington, D. C. & Taskinen, K. A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 30, 83–93 (2001).

    CAS  Article  Google Scholar 

  • 19.

    Dobb, M., Johnson, D. & Saville, B. Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J. Polym. Sci. Polym. Phys. Ed. 15, 2201–2211 (1977).

    CAS  Article  Google Scholar 

  • 20.

    Seyler, H., Storz, C., Abbel, R. & Kilbinger, A. F. A facile synthesis of aramide–peptide amphiphiles. Soft Matter 5, 2543–2545 (2009).

    CAS  Google Scholar 

  • 21.

    Claussen, R. C., Rabatic, B. M. & Stupp, S. I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J. Am. Chem. Soc. 125, 12680–12681 (2003).

    CAS  Article  Google Scholar 

  • 22.

    Yang, M. et al. Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5, 6945–6954 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Schleuss, T. W. et al. Hockey-puck micelles from oligo(p-benzamide)-b-PEG rod–coil block copolymers. Angew. Chem. Int. Ed. 45, 2969–2975 (2006).

    CAS  Article  Google Scholar 

  • 24.

    Bohle, A. et al. Hydrogen-bonded aggregates of oligoaramide−poly(ethylene glycol) block copolymers. Macromolecules 43, 4978–4985 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Abbel, R., Schleuss, T. W., Frey, H. & Kilbinger, A. F. M. Rod-length dependent aggregation in a series of oligo(p-benzamide)-block-poly(ethylene glycol) rod-coil copolymers. Macromol. Chem. Phys. 206, 2067–2074 (2005).

    CAS  Article  Google Scholar 

  • 26.

    Johansson, A., Kollman, P., Rothenberg, S. & McKelvey, J. Hydrogen bonding ability of the amide group. J. Am. Chem. Soc. 96, 3794–3800 (1974).

    CAS  Article  Google Scholar 

  • 27.

    Dixon, D. A., Dobbs, K. D. & Valentini, J. J. Amide-water and amide-amide hydrogen bond strengths. J. Phys. Chem. 98, 13435–13439 (1994).

    CAS  Article  Google Scholar 

  • 28.

    Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 39, 895–900 (2006).

    CAS  Article  Google Scholar 

  • 29.

    Nallet, F., Laversanne, R. & Roux, D. Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases: interplay between form and structure factors. J. Phys. II 3, 487–502 (1993).

    CAS  Google Scholar 

  • 30.

    Mertens, H. D. & Svergun, D. I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 172, 128–141 (2010).

    CAS  Article  Google Scholar 

  • 31.

    Yokoi, H., Kinoshita, T. & Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl Acad. Sci. USA 102, 8414–8419 (2005).

    CAS  Article  Google Scholar 

  • 32.

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Article  Google Scholar 

  • 33.

    Cravotto, G. & Cintas, P. Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem. Soc. Rev. 38, 2684–2697 (2009).

    CAS  Article  Google Scholar 

  • 34.

    Gorelik, T. E., van de Streek, J., Kilbinger, A. F., Brunklaus, G. & Kolb, U. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. Acta Crystallogr. B Struct. Sci. 68, 171–181 (2012).

    CAS  Article  Google Scholar 

  • 35.

    Gorelik, T. et al. H-bonding schemes of di- and tri-p-benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR. CrystEngComm 12, 1824–1832 (2010).

    CAS  Article  Google Scholar 

  • 36.

    Wang, J., Liu, K., Xing, R. & Yan, X. Peptide self-assembly: thermodynamics and kinetics. Chem. Soc. Rev. 45, 5589–5604 (2016).

    CAS  Article  Google Scholar 

  • 37.

    Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 1767, 1073–1101 (2007).

    CAS  Article  Google Scholar 

  • 38.

    Zandomeneghi, G., Krebs, M. R., McCammon, M. G. & Fändrich, M. FTIR reveals structural differences between native β‐sheet proteins and amyloid fibrils. Protein Sci. 13, 3314–3321 (2004).

    CAS  Article  Google Scholar 

  • 39.

    Matayoshi, E. D., Wang, G. T., Krafft, G. A. & Erickson, J. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247, 954–958 (1990).

    CAS  Article  Google Scholar 

  • 40.

    Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005).

    CAS  Article  Google Scholar 

  • 41.

    Smith, J. F., Knowles, T. P., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    CAS  Article  Google Scholar 

  • 42.

    Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    CAS  Article  Google Scholar 

  • 43.

    Lamour, G., Kirkegaard, J. B., Li, H., Knowles, T. P. & Gsponer, J. Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains. Source Code Biol. Med. 9, 16 (2014).

    Article  Google Scholar 

  • 44.

    Huang, Y. Y., Knowles, T. P. & Terentjev, E. M. Strength of nanotubes, filaments, and nanowires from sonication‐induced scission. Adv. Mater. 21, 3945–3948 (2009).

    CAS  Article  Google Scholar 

  • 45.

    Nassar, R., Wong, E., Gsponer, J. & Lamour, G. Inverse correlation between amyloid stiffness and size. J. Am. Chem. Soc. 141, 58–61 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Peng, Z. et al. High tensile strength of engineered β-solenoid fibrils via sonication and pulling. Biophys. J. 113, 1945–1955 (2017).

    CAS  Article  Google Scholar 

  • 47.

    Santos, H. M., Lodeiro, C. & Capelo-Martínez, J.-L. in Ultrasound in Chemistry: Analytical Applications 1–16 (Wiley Online Library, 2009).

  • 48.

    Lamour, G. et al. Mapping the broad structural and mechanical properties of amyloid fibrils. Biophys. J. 112, 584–594 (2017).

    CAS  Article  Google Scholar 

  • 49.

    Zhao, X. et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 39, 3480–3498 (2010).

    CAS  Article  Google Scholar 

  • 50.

    Niece, K. L., Hartgerink, J. D., Donners, J. J. & Stupp, S. I. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 125, 7146–7147 (2003).

    CAS  Article  Google Scholar 

  • 51.

    Angeloni, N. L. et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32, 1091–1101 (2011).

    CAS  Article  Google Scholar 

  • 52.

    Fink, L., Steiner, A., Szekely, O., Szekely, P. & Raviv, U. Structure and interactions between charged lipid membranes in the presence of multivalent ions. Langmuir 35, 9694–9703 (2019).

    CAS  Article  Google Scholar 

  • 53.

    Knowles, T. P. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).

    CAS  Article  Google Scholar 

  • 54.

    Bradbury, R. & Nagao, M. Effect of charge on the mechanical properties of surfactant bilayers. Soft Matter 12, 9383–9390 (2016).

    CAS  Article  Google Scholar 

  • 55.

    Takahashi, Y., Ozaki, Y., Takase, M. & Krigbaum, W. Crystal structure of poly(p‐benzamide). J. Polym. Sci. B Polym. Phys. 31, 1135–1143 (1993).

    CAS  Article  Google Scholar 

  • 56.

    Paramonov, S. E., Jun, H.-W. & Hartgerink, J. D. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).

    CAS  Article  Google Scholar 

  • 57.

    Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    CAS  Article  Google Scholar 

  • 58.

    Lindemann, W. R., Christoff-Tempesta, T. & Ortony, J. H. A global minimization toolkit for batch-fitting and χ2 cluster analysis of CW-EPR spectra. Biophys. J. 119, 1937–1945 (2020).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00840-w

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?