Zephyrnet Logo

Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition

Date:

Home > Press > Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition

Artist's impression of the phase transition of indium atoms on a silicon crystal controlled by light pulses CREDIT
Dr Murat Sivis
Artist’s impression of the phase transition of indium atoms on a silicon crystal controlled by light pulses CREDIT
Dr Murat Sivis

Abstract:
The goal of “Femtochemistry” is to film and control chemical reactions with short flashes of light. Using consecutive laser pulses, atomic bonds can be excited precisely and broken as desired. So far, this has been demonstrated for selected molecules. Researchers at the University of Göttingen and the Max Planck Institute for Biophysical Chemistry have now succeeded in transferring this principle to a solid, controlling its crystal structure on the surface. The results have been published in the journal Nature.

Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition


Göttingen, Germany | Posted on July 8th, 2020

The team, led by Jan Gerrit Horstmann and Professor Claus Ropers, evaporated an extremely thin layer of indium onto a silicon crystal and then cooled the crystal down to -220 degrees Celsius. While the indium atoms form conductive metal chains on the surface at room temperature, they spontaneously rearrange themselves into electrically insulating hexagons at such low temperatures. This process is known as the transition between two phases – the metallic and the insulating – and can be switched by laser pulses. In their experiments, the researchers then illuminated the cold surface with two short laser pulses and immediately afterwards observed the arrangement of the indium atoms using an electron beam. They found that the rhythm of the laser pulses has a considerable influence on how efficiently the surface can be switched to the metallic state.

This effect can be explained by oscillations of the atoms on the surface, as first author Jan Gerrit Horstmann explains: “In order to get from one state to the other, the atoms have to move in different directions and in doing so overcome a sort of hill, similar to a roller coaster ride. A single laser pulse is not enough for this, however, and the atoms merely swing back and forth. But like a rocking motion, a second pulse at the right time can give just enough energy to the system to make the transition possible.” In their experiments the physicists observed several oscillations of the atoms, which influence the conversion in very different ways.

Their findings not only contribute to the fundamental understanding of rapid structural changes, but also open up new perspectives for surface physics. “Our results show new strategies to control the conversion of light energy at the atomic scale,” says Ropers from the Faculty of Physics at the University of Göttingen, who is also a Director at the Max Planck Institute for Biophysical Chemistry. “The targeted control of the movements of atoms in solids using laser pulse sequences could also make it possible to create previously unobtainable structures with completely new physical and chemical properties.”

###

The work was funded by the German Research Foundation (DFG) and the European Research Council (ERC).

####

For more information, please click here

Contacts:
Melissa Sollich
49-551-392-6228

Professor Claus Ropers
University of Göttingen
Faculty of Physics, Professor of Experimental Solid State Physics and Director, Max Planck Institute for Biophysical Chemistry

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Tel: +49 551 39-24549
Email:
http://www.uni-goettingen.de/en/598878.html

Jan Gerrit Horstmann
Tel: +49 (0)551 3921485
Email:
http://www.uni-goettingen.de/en/598878.html

Copyright © University of Göttingen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: J. G. Horstmann et al: Coherent control of a surface structural phase transition. Nature 2020, DoI: 10.1038/s41586-020-2440-4:

Related News Press

News and information

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Chemistry

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Exotic nanotubes move in less-mysterious ways: Rice scientists, engineers show boron nitride’s promise for composites, biomedical applications June 2nd, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Possible Futures

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Discoveries

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Materials/Metamaterials

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Announcements

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56241

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?