Connect with us

Nano Technology

Researchers guide a single ion through a Bose Einstein condensate

Avatar

Published

on

Jan 20, 2021 (Nanowerk News) Transport processes are ubiquitous in nature but still raise many questions. The research team around Florian Meinert from the 5th Institute of Physics at the University of Stuttgart has now developed a new method that allows them to observe a single charged particle on its path through a dense cloud of ultracold atoms. The results were published in Physical Review Letters (“Transport of a single cold ion immersed in a Bose-Einstein condensate”) and are subject in a Viewpoint of the accompanying popular science journal Physics (“Tracking a Single Ion in an Ultracold Gas”). Artistical visualization of the trajectory of a positively charged ion (yellow) through the BEC (green) Artistical visualization of the trajectory of a positively charged ion (yellow) through the BEC (green). (Image: Celina Brandes, University of Stuttgart) Meinert‘s team uses a so called Bose Einstein condensate (BEC) for their experiments. This exotic state of matter consists of a dense cloud of ultracold atoms. By means of sophisticated laser excitation, the researchers create a single Rydberg atom within the gas. In this giant atom the electron is a thousand times further away from the nucleus than in the ground state and thus only very weakly bound to the core. With a specially designed sequence of electric field pulses, the researchers snatch the electron away from the atom. The formerly neutral atom turns into a positively charged ion that remains nearly at rest despite the process of detaching the electron. In a next step, the researchers use precise electric fields to pull the ion in a controlled way through the dense cloud of atoms in the BEC. The ion picks up speed in the electric field, collides on its way with other atoms, slows down and is accelerated again by the electric field. The interplay between acceleration and deceleration by collisions leads to a constant motion of the ion through the BEC. “This new approach allows us to measure the mobility of a single ion in a Bose Einstein condensate for the very first time,” Thomas Dieterle, PhD student on the experiment, is pleased. The researchers’ next goal is to observe collisions between a single ion and atoms at even lower temperatures, where quantum mechanics instead of classical mechanics dictates the processes. “In future, our newly created model system – the transport of a single ion – will allow for a better understanding of more complex transport processes that are relevant in many-body systems, e.g. in certain solids or in superconductors,” Meinert is sure. These measurements are also an important step on the way to investigate exotic quasi-particles, so-called polarons, which can arise through interaction between atoms and ions. The neighboring lab at the institute already works on an ion microscope that will allow to directly observe collisions between atoms and ions. While an electron microscope uses negatively charged particles to create an image, this is what happens in an ion microscope with positively charged ions. Electrostatic lenses deflect ions similar to light rays in a classical optical microscope. The work was created in the Center for Integrated Quantum Science and Technology IQST, a consortium of the universities of Stuttgart and Ulm and the Max Planck Institute for Solid State Research in Stuttgart. The aim of the center is to promote synergies between physics and related natural and engineering sciences and to represent quantum science from the basics to technological applications. Researchers and practitioners from the fields of physics, chemistry, biology, mathematics, and engineering science at IQST investigate the world of quanta in its entirety and in some cases cooperate directly with the industry.

Source: https://www.nanowerk.com/nanotechnology-news2/newsid=57061.php

Nano Technology

A speed limit also applies in the quantum world: Study by the University of Bonn determines minimum time for complex quantum operations

Avatar

Published

on

Even in the world of the smallest particles with their own special rules, things cannot proceed infinitely fast. Physicists at the University of Bonn have now shown what the speed limit is for complex… Source: http://www.nanotech-now.com/news.cgi?story_id=56571

Continue Reading

Nano Technology

180 Degree Capital Corp. Reports +6.7% Growth in Q4 2020, $9.28 Net Asset Value per Share as of December 31, 2020, and Developments from Q1 2021 Including Expected Investment in a Planned SPAC Sponsor

Avatar

Published

on

180 Degree Capital Corp. (NASDAQ:TURN) (“180” and the “Company”), today reported its financial results as of December 31, 2020, and additional developments from the first quarter of 2021. The Company… Source: http://www.nanotech-now.com/news.cgi?story_id=56572

Continue Reading

Nano Technology

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows

Avatar

Published

on

CEA-Leti and Dolphin Design have developed an adaptive back-biasing (ABB) architecture for FD-SOI chips that can be seamlessly integrated in the digital design flow with industrial-grade qualification… Source: http://www.nanotech-now.com/news.cgi?story_id=56573

Continue Reading

Nano Technology

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system

Avatar

Published

on

Nanoparticles used in drug delivery systems, bioimaging, and regenerative medicine migrate from tissues to lymphatic vessels after entering the body, so it is necessary to clarify the interaction betw… Source: http://www.nanotech-now.com/news.cgi?story_id=56569

Continue Reading
Blockchain5 days ago

VeChain Review: Blockchain Supply Chain Management

PR Newswire5 days ago

S3 AeroDefense Signs 10 Year Distribution Agreement & Repair License with Honeywell Aerospace

Blockchain4 days ago

Carrefour Shoppers in the UAE to Get Farm-to-Shelf Information with Blockchain Technology

Amb Crypto5 days ago

Ethereum, Uniswap, Dogecoin Price Analysis: 21 February

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology4 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

Automotive4 days ago

SpaceX Starship ready to find out if third time’s the charm later this week

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology3 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology4 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

PR Newswire4 days ago

International HPV Awareness Day Summit

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology4 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

AI4 days ago

I’m fired: Google AI in meltdown as ethics unit co-lead forced out just weeks after coworker ousted

PR Newswire4 days ago

Anticoagulant Reversal Drugs Market Size Worth $1.81 Billion By 2027: Grand View Research, Inc.

Automotive3 days ago

FAA clears SpaceX Starship prototype for third launch and landing attempt

PR Newswire4 days ago

IAR Systems introduces 64-bit Arm core support in leading embedded development tools

Nano Technology4 days ago

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology4 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

PR Newswire4 days ago

Why Famtech Will Become a Major Trend in the Coming Years

PR Newswire4 days ago

Heritage Health Solutions, Inc. Announces New President

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Nano Technology3 days ago

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

Nano Technology5 days ago

Optical frequency combs found a new dimension

Trending