Connect with us

ZDNET

Researchers create an ‘un-hackable’ quantum network over hundreds of kilometers using optical fiber

Published

on

Researchers from Toshiba have successfully sent quantum information over 600-kilometer-long optical fibers, creating a new distance record and paving the way for large-scale quantum networks that could be used to exchange information securely between cities and even countries. 

Working from the company’s R&D lab in Cambridge in the UK, the scientists demonstrated that they could transmit quantum bits (or qubits) over hundreds of kilometers of optical fiber without scrambling the fragile quantum data encoded in the particles, thanks to a new technology that stabilizes the environmental fluctuations occurring in the fiber.  

This could go a long way in helping to create a next-generation quantum internet that scientists hope will one day span global distances.  

The quantum internet, which will take the shape of a global network of quantum devices connected by long-distance quantum communication links, is expected to enable use-cases that are impossible with today’s web applications. They range from generating virtually un-hackable communications, to creating clusters of inter-connected quantum devices that together could surpass the compute power of classical devices. 

Quantum Computing

But in order to communicate, quantum devices need to send and receive qubits – tiny particles that exist in a special, but extremely fragile, quantum state. Finding the best way to transmit qubits without having them fall from their quantum state has got scientists around the world scratching their heads for many years. 

One approach consists of shooting qubits down optical fibers that connect quantum devices. The method has been successful but is limited in scale: small changes in the environment, such as temperature fluctuations, cause the fibers to expand and contract, and risk messing with the qubits.  

This is why experiments with optical fiber, until now, have typically been limited to a range of hundreds of kilometers; in other words, nowhere near enough to create the large-scale, global quantum internet dreamed up by scientists. 

To tackle the instable conditions inside optical fibers, Toshiba’s researchers developed a new technique called “dual band stabilization”. The method sends two signals down the optical fiber at different wavelengths. The first wavelength is used to cancel out rapidly varying fluctuations, while the second wavelength, which is at the same wavelength as the qubits, is used for finer adjustments of the phase. 

Put simply, the two wavelengths combine to cancel environmental fluctuations inside the fiber in real time, which according to Toshiba’s researchers, enabled qubits to travel safely over 600 kilometers. 

Already, the company’s team has used the technology to trial one of the most well-known applications of quantum networks: quantum-based encryption. 

Known as Quantum Key Distribution (QKD), the protocol leverages quantum networks to create security keys that are impossible to hack, meaning that users can securely exchange confidential information, like bank statements or health records, over an untrusted communication channel such as the internet. 

During a communication, QKD works by having one of the two parties encrypt a piece of data by encoding the cryptography key onto qubits and sending those qubits over to the other person thanks to a quantum network. Because of the laws of quantum mechanics, however, it is impossible for a spy to intercept the qubits without leaving a sign of eavesdropping that can be seen by the users – who, in turn, can take steps to protect the information. 

Unlike classical cryptography, therefore, QKD does not rely on the mathematical complexity of solving security keys, but rather leverages the laws of physics. This means that even the most powerful computers would be unable to hack the qubits-based keys. It is easy to see why the idea is gathering the attention of players from all parts, ranging from financial institutions to intelligence agencies. 

Toshiba’s new technique to reduce fluctuations in optical fibers enabled the researchers to carry out QKD over a much larger distance than previously possible. “This is a very exciting result,” said Mirko Pittaluga, research scientist at Toshiba Europe. “With the new techniques we have developed, further extensions of the communication distance for QKD are still possible and our solutions can also be applied to other quantum communications protocols and applications.” 

When it comes to carrying out QKD using optical fiber, Toshiba’s 600-kilometer mark is a record-breaker, which the company predicts will enable secure links to be created between cities like London, Paris, Brussels, Amsterdam and Dublin.  

Other research groups, however, have focused on different methods to transmit qubits, which have enabled QKD to happen over even larger distances. Chinese scientists, for example, are using a mix of satellite-based transmissions communicating with optical fibers on the ground, and recently succeeded in carrying out QKD over a total distance of 4,600 kilometers

Every approach has its pros and cons: using satellite technologies is more costly and could be harder to scale up. But one thing is for certain: research groups in the UK, China and the US are experimenting at pace to make quantum networks become a reality. 

Toshiba’s research was partially funded by the EU, which is showing a keen interest in developing quantum communications. Meanwhile, China’s latest five-year plan also allocates a special place for quantum networks; and the US recently published a blueprint laying out a step-by-step leading to the establishment of a global quantum internet. 

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/#ftag=RSSbaffb68

ZDNET

Fastest VPN deal: Get lifetime protection for 10 devices for only $25

Published

on

sale-16809-article-image.jpg
(Image: StackCommerce)

Global corporations have been ridiculously lazy in implementing the most powerful cybersecurity measures available, which puts all of our personal data at risk. That’s all the more reason to make sure your own personal security is as strong as possible, and a lifetime subscription to FastestVPN for up to 10 devices provides some of the most comprehensive protection on the market.

FastestVPN offers a smart, user-friendly service for all of your devices, including Android, iOS, Windows, Mac, your router, and even your Smart TV. It uses more than 200 high-speed servers around the world, all with military-grade 256-bit AES encryption. And you get unlimited switches between them, as well as unlimited bandwidth for the simultaneous use of your 10 devices.

An ad blocker is included for your convenience, and FastestVPN’s strict no-logging policy ensures no one will have access to your personal data. Anti-malware software is included and an extra layer of protection is provided by a NAT firewall. There is even a kill switch to disconnect you from the internet if your VPN connection drops for any reason.

While some VPNs may slow down your internet connection, as you might expect from its name, FastestVPN provides all of this protection at blazing fast speeds. You can also access any content you like, regardless of geographic restrictions. Simply access the service’s fastest server and you can download or stream even HD-quality video with absolute anonymity and zero buffering. USA Netflix support is included in your plan.

Given the depth of features, it should come as no surprise that TenBestVPNs said:

“FastestVPN is one of the most promising VPN services in the market.”

You really don’t want to pass up this opportunity to get a lifetime subscription to FastestVPN for 10 devices, because it’s currently available at the heavily discounted price of $24.99.

ZDNet Recommends

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.zdnet.com/article/fastest-vpn-deal-get-protection-for-10-devices-for-only-25/#ftag=RSSbaffb68

Continue Reading

ZDNET

Brazilians spend more time on smartphones than rest of the world

Published

on

Smartphone users in Brazil spend more time on their devices than any other country in the world, a new report has found.

Daily time spent on mobile apps globally jumped 45% between 2019 and 2021, according to a report published by market data company App Annie Intelligence.

On a daily basis, Brazilians used their smartphones for 5.4 hours on average in the second quarter of 2021. By comparison, daily smartphone use in Brazil reached 3.8 hours on average in 2019, and 4.8 hours daily in 2020.

Up until last year, Brazil was the second country in the world with the most intensive use of smartphones, behind Indonesia, which now ranks second with an average of 5.3 hours of smartphone use per day.

India ranked third in the research with a daily smartphone usage time of 4.9 hours on average, followed by South Korea (4,8 hours), Mexico (4,7 hours), Turkey (4,5 hours), Japan (4,4 hours), Canada (4,1 hours), United States (3,9 hours) and United Kingdom (3,8 hours).

A separate report on global trends, also by App Annie, highlighted areas of growth within the mobile app landscape. When it comes to the depth of engagement among the top social networking apps, the study noted that WhatsApp is the app Brazilians use the most, with an average of 30.3 hours per month in 2020 compared to 26.2 hours in 2019.

Notably, the use of TikTok in Brazil increased significantly, 14 hours in 2020 compared with 6.8 hours in 2019, growing faster than Facebook (15.6 hours per month versus 14 hours per month in 2019), Instagram (14 hours in 2020 versus 11.5 hours in 2019) and Twitter (6.4 hours per month in 2020 versus 5.1 hours in 2019).

According to the App Annie trends report, Brazil saw 75% year-over-year growth in downloads of finance apps in 2020. The average number of hours spent in such apps also increased by 45% last year.

Separate research by by consultancy Ebit/Nielsen in partnership with Brazilian fintech Bexs found that more than half of all online purchases in Brazil were made through smartphones since the start of the Covid-19 pandemic.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.zdnet.com/article/brazilians-spend-more-time-on-smartphones-than-rest-of-the-world/#ftag=RSSbaffb68

Continue Reading

HRTech

What is AI? Here’s everything you need to know about artificial intelligence

Published

on

What is artificial intelligence (AI)?

It depends who you ask.

Back in the 1950s, the fathers of the field, Minsky and McCarthy, described artificial intelligence as any task performed by a machine that would have previously been considered to require human intelligence.

That’s obviously a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not.

Modern definitions of what it means to create intelligence are more specific. Francois Chollet, an AI researcher at Google and creator of the machine-learning software library Keras, has said intelligence is tied to a system’s ability to adapt and improvise in a new environment, to generalise its knowledge and apply it to unfamiliar scenarios.

“Intelligence is the efficiency with which you acquire new skills at tasks you didn’t previously prepare for,” he said.

“Intelligence is not skill itself; it’s not what you can do; it’s how well and how efficiently you can learn new things.”

It’s a definition under which modern AI-powered systems, such as virtual assistants, would be characterised as having demonstrated ‘narrow AI’, the ability to generalise their training when carrying out a limited set of tasks, such as speech recognition or computer vision.

Typically, AI systems demonstrate at least some of the following behaviours associated with human intelligence: planning, learning, reasoning, problem-solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity.

What are the different types of AI?

At a very high level, artificial intelligence can be split into two broad types: 

Narrow AI

Narrow AI is what we see all around us in computers today — intelligent systems that have been taught or have learned how to carry out specific tasks without being explicitly programmed how to do so.

This type of machine intelligence is evident in the speech and language recognition of the Siri virtual assistant on the Apple iPhone, in the vision-recognition systems on self-driving cars, or in the recommendation engines that suggest products you might like based on what you bought in the past. Unlike humans, these systems can only learn or be taught how to do defined tasks, which is why they are called narrow AI.

General AI

General AI is very different and is the type of adaptable intellect found in humans, a flexible form of intelligence capable of learning how to carry out vastly different tasks, anything from haircutting to building spreadsheets or reasoning about a wide variety of topics based on its accumulated experience. 

This is the sort of AI more commonly seen in movies, the likes of HAL in 2001 or Skynet in The Terminator, but which doesn’t exist today – and AI experts are fiercely divided over how soon it will become a reality.

What can Narrow AI do?

There are a vast number of emerging applications for narrow AI:

  • Interpreting video feeds from drones carrying out visual inspections of infrastructure such as oil pipelines.
  • Organizing personal and business calendars.
  • Responding to simple customer-service queries.
  • Coordinating with other intelligent systems to carry out tasks like booking a hotel at a suitable time and location.
  • Helping radiologists to spot potential tumors in X-rays.
  • Flagging inappropriate content online, detecting wear and tear in elevators from data gathered by IoT devices.
  • Generating a 3D model of the world from satellite imagery… the list goes on and on.

New applications of these learning systems are emerging all the time. Graphics card designer Nvidia recently revealed an AI-based system Maxine, which allows people to make good quality video calls, almost regardless of the speed of their internet connection. The system reduces the bandwidth needed for such calls by a factor of 10 by not transmitting the full video stream over the internet and instead of animating a small number of static images of the caller in a manner designed to reproduce the callers facial expressions and movements in real-time and to be indistinguishable from the video.

However, as much untapped potential as these systems have, sometimes ambitions for the technology outstrips reality. A case in point is self-driving cars, which themselves are underpinned by AI-powered systems such as computer vision. Electric car company Tesla is lagging some way behind CEO Elon Musk’s original timeline for the car’s Autopilot system being upgraded to “full self-driving” from the system’s more limited assisted-driving capabilities, with the Full Self-Driving option only recently rolled out to a select group of expert drivers as part of a beta testing program.

What can General AI do?

A survey conducted among four groups of experts in 2012/13 by AI researchers Vincent C Müller and philosopher Nick Bostrom reported a 50% chance that Artificial General Intelligence (AGI) would be developed between 2040 and 2050, rising to 90% by 2075. The group went even further, predicting that so-called ‘superintelligence‘ – which Bostrom defines as “any intellect that greatly exceeds the cognitive performance of humans in virtually all domains of interest” — was expected some 30 years after the achievement of AGI. 

However, recent assessments by AI experts are more cautious. Pioneers in the field of modern AI research such as Geoffrey Hinton, Demis Hassabis and Yann LeCun say society is nowhere near developing AGI. Given the scepticism of leading lights in the field of modern AI and the very different nature of modern narrow AI systems to AGI, there is perhaps little basis to fears that a general artificial intelligence will disrupt society in the near future.

That said, some AI experts believe such projections are wildly optimistic given our limited understanding of the human brain and believe that AGI is still centuries away.

What are recent landmarks in the development of AI?

watson-1.jpg

IBM

While modern narrow AI may be limited to performing specific tasks, within their specialisms, these systems are sometimes capable of superhuman performance, in some instances even demonstrating superior creativity, a trait often held up as intrinsically human.

There have been too many breakthroughs to put together a definitive list, but some highlights include: 

  • In 2009 Google showed its self-driving Toyota Prius could complete more than 10 journeys of 100 miles each, setting society on a path towards driverless vehicles.
  • In 2011, the computer system IBM Watson made headlines worldwide when it won the US quiz show Jeopardy!, beating two of the best players the show had ever produced. To win the show, Watson used natural language processing and analytics on vast repositories of data that is processed to answer human-posed questions, often in a fraction of a second.
  • In 2012, another breakthrough heralded AI’s potential to tackle a multitude of new tasks previously thought of as too complex for any machine. That year, the AlexNet system decisively triumphed in the ImageNet Large Scale Visual Recognition Challenge. AlexNet’s accuracy was such that it halved the error rate compared to rival systems in the image-recognition contest.

AlexNet’s performance demonstrated the power of learning systems based on neural networks, a model for machine learning that had existed for decades but that was finally realising its potential due to refinements to architecture and leaps in parallel processing power made possible by Moore’s Law. The prowess of machine-learning systems at carrying out computer vision also hit the headlines that year, with Google training a system to recognise an internet favorite: pictures of cats.

The next demonstration of the efficacy of machine-learning systems that caught the public’s attention was the 2016 triumph of the Google DeepMind AlphaGo AI over a human grandmaster in Go, an ancient Chinese game whose complexity stumped computers for decades. Go has about possible 200 moves per turn compared to about 20 in Chess. Over the course of a game of Go, there are so many possible moves that are searching through each of them in advance to identify the best play is too costly from a computational point of view. Instead, AlphaGo was trained how to play the game by taking moves played by human experts in 30 million Go games and feeding them into deep-learning neural networks.

Training these deep learning networks can take a very long time, requiring vast amounts of data to be ingested and iterated over as the system gradually refines its model in order to achieve the best outcome.

However, more recently, Google refined the training process with AlphaGo Zero, a system that played “completely random” games against itself and then learned from it. Google DeepMind CEO Demis Hassabis has also unveiled a new version of AlphaGo Zero that has mastered the games of chess and shogi.

And AI continues to sprint past new milestones: a system trained by OpenAI has defeated the world’s top players in one-on-one matches of the online multiplayer game Dota 2.

That same year, OpenAI created AI agents that invented their own language to cooperate and achieve their goal more effectively, followed by Facebook training agents to negotiate and lie.

2020 was the year in which an AI system seemingly gained the ability to write and talk like a human about almost any topic you could think of.

The system in question, known as Generative Pre-trained Transformer 3 or GPT-3 for short, is a neural network trained on billions of English language articles available on the open web.

From soon after it was made available for testing by the not-for-profit organisation OpenAI, the internet was abuzz with GPT-3’s ability to generate articles on almost any topic that was fed to it, articles that at first glance were often hard to distinguish from those written by a human. Similarly, impressive results followed in other areas, with its ability to convincingly answer questions on a broad range of topics and even pass for a novice JavaScript coder.

But while many GPT-3 generated articles had an air of verisimilitude, further testing found the sentences generated often didn’t pass muster, offering up superficially plausible but confused statements, as well as sometimes outright nonsense.

There’s still considerable interest in using the model’s natural language understanding as to the basis of future services. It is available to select developers to build into software via OpenAI’s beta API. It will also be incorporated into future services available via Microsoft’s Azure cloud platform.

Perhaps the most striking example of AI’s potential came late in 2020 when the Google attention-based neural network AlphaFold 2 demonstrated a result some have called worthy of a Nobel Prize for Chemistry.

The system’s ability to look at a protein’s building blocks, known as amino acids, and derive that protein’s 3D structure could profoundly impact the rate at which diseases are understood, and medicines are developed. In the Critical Assessment of protein Structure Prediction contest, AlphaFold 2 determined the 3D structure of a protein with an accuracy rivaling crystallography, the gold standard for convincingly modelling proteins.

Unlike crystallography, which takes months to return results, AlphaFold 2 can model proteins in hours. With the 3D structure of proteins playing such an important role in human biology and disease, such a speed-up has been heralded as a landmark breakthrough for medical science, not to mention potential applications in other areas where enzymes are used in biotech.

What is machine learning?

Practically all of the achievements mentioned so far stemmed from machine learning, a subset of AI that accounts for the vast majority of achievements in the field in recent years. When people talk about AI today, they are generally talking about machine learning. 

Currently enjoying something of a resurgence, in simple terms, machine learning is where a computer system learns how to perform a task rather than being programmed how to do so. This description of machine learning dates all the way back to 1959 when it was coined by Arthur Samuel, a pioneer of the field who developed one of the world’s first self-learning systems, the Samuel Checkers-playing Program.

To learn, these systems are fed huge amounts of data, which they then use to learn how to carry out a specific task, such as understanding speech or captioning a photograph. The quality and size of this dataset are important for building a system able to carry out its designated task accurately. For example, if you were building a machine-learning system to predict house prices, the training data should include more than just the property size, but other salient factors such as the number of bedrooms or the size of the garden.

What are neural networks?

The key to machine learning success is neural networks. These mathematical models are able to tweak internal parameters to change what they output. A neural network is fed datasets that teach it what it should spit out when presented with certain data during training. In concrete terms, the network might be fed greyscale images of the numbers between zero and 9, alongside a string of binary digits — zeroes and ones — that indicate which number is shown in each greyscale image. The network would then be trained, adjusting its internal parameters until it classifies the number shown in each image with a high degree of accuracy. This trained neural network could then be used to classify other greyscale images of numbers between zero and 9. Such a network was used in a seminal paper showing the application of neural networks published by Yann LeCun in 1989 and has been used by the US Postal Service to recognise handwritten zip codes.

The structure and functioning of neural networks are very loosely based on the connections between neurons in the brain. Neural networks are made up of interconnected layers of algorithms that feed data into each other. They can be trained to carry out specific tasks by modifying the importance attributed to data as it passes between these layers. During the training of these neural networks, the weights attached to data as it passes between layers will continue to be varied until the output from the neural network is very close to what is desired. At that point, the network will have ‘learned’ how to carry out a particular task. The desired output could be anything from correctly labelling fruit in an image to predicting when an elevator might fail based on its sensor data.

A subset of machine learning is deep learning, where neural networks are expanded into sprawling networks with a large number of sizeable layers that are trained using massive amounts of data. These deep neural networks have fuelled the current leap forward in the ability of computers to carry out tasks like speech recognition and computer vision.

There are various types of neural networks with different strengths and weaknesses. Recurrent Neural Networks (RNN) are a type of neural net particularly well suited to Natural Language Processing (NLP) — understanding the meaning of text — and speech recognition, while convolutional neural networks have their roots in image recognition and have uses as diverse as recommender systems and NLP. The design of neural networks is also evolving, with researchers refining a more effective form of deep neural network called long short-term memory or LSTM — a type of RNN architecture used for tasks such as NLP and for stock market predictions – allowing it to operate fast enough to be used in on-demand systems like Google Translate. 

ai-ml-neural-network.jpg

The structure and training of deep neural networks.

Image: Nuance

What are other types of AI?

Another area of AI research is evolutionary computation.

It borrows from Darwin’s theory of natural selection. It sees genetic algorithms undergo random mutations and combinations between generations in an attempt to evolve the optimal solution to a given problem.

This approach has even been used to help design AI models, effectively using AI to help build AI. This use of evolutionary algorithms to optimize neural networks is called neuroevolution. It could have an important role to play in helping design efficient AI as the use of intelligent systems becomes more prevalent, particularly as demand for data scientists often outstrips supply. The technique was showcased by Uber AI Labs, which released papers on using genetic algorithms to train deep neural networks for reinforcement learning problems.

Finally, there are expert systems, where computers are programmed with rules that allow them to take a series of decisions based on a large number of inputs, allowing that machine to mimic the behaviour of a human expert in a specific domain. An example of these knowledge-based systems might be, for example, an autopilot system flying a plane.

What is fueling the resurgence in AI?

As outlined above, the biggest breakthroughs for AI research in recent years have been in the field of machine learning, in particular within the field of deep learning.

This has been driven in part by the easy availability of data, but even more so by an explosion in parallel computing power, during which time the use of clusters of graphics processing units (GPUs) to train machine-learning systems has become more prevalent. 

Not only do these clusters offer vastly more powerful systems for training machine-learning models, but they are now widely available as cloud services over the internet. Over time the major tech firms, the likes of Google, Microsoft, and Tesla, have moved to using specialised chips tailored to both running, and more recently, training, machine-learning models.

An example of one of these custom chips is Google’s Tensor Processing Unit (TPU), the latest version of which accelerates the rate at which useful machine-learning models built using Google’s TensorFlow software library can infer information from data, as well as the rate at which they can be trained.

These chips are used to train up models for DeepMind and Google Brain and the models that underpin Google Translate and the image recognition in Google Photos and services that allow the public to build machine-learning models using Google’s TensorFlow Research Cloud. The third generation of these chips was unveiled at Google’s I/O conference in May 2018 and have since been packaged into machine-learning powerhouses called pods that can carry out more than one hundred thousand trillion floating-point operations per second (100 petaflops). These ongoing TPU upgrades have allowed Google to improve its services built on top of machine-learning models, for instance, halving the time taken to train models used in Google Translate.

What are the elements of machine learning?

As mentioned, machine learning is a subset of AI and is generally split into two main categories: supervised and unsupervised learning.

Supervised learning

A common technique for teaching AI systems is by training them using many labelled examples. These machine-learning systems are fed huge amounts of data, which has been annotated to highlight the features of interest. These might be photos labelled to indicate whether they contain a dog or written sentences that have footnotes to indicate whether the word ‘bass’ relates to music or a fish. Once trained, the system can then apply these labels to new data, for example, to a dog in a photo that’s just been uploaded.

This process of teaching a machine by example is called supervised learning. Labelling these examples is commonly carried out by online workers employed through platforms like Amazon Mechanical Turk.

Training these systems typically requires vast amounts of data, with some systems needing to scour millions of examples to learn how to carry out a task effectively –although this is increasingly possible in an age of big data and widespread data mining. Training datasets are huge and growing in size — Google’s Open Images Dataset has about nine million images, while its labelled video repository YouTube-8M links to seven million labelled videos. ImageNet, one of the early databases of this kind, has more than 14 million categorized images. Compiled over two years, it was put together by nearly 50 000 people — most of whom were recruited through Amazon Mechanical Turk — who checked, sorted, and labelled almost one billion candidate pictures. 

Having access to huge labelled datasets may also prove less important than access to large amounts of computing power in the long run.

In recent years, Generative Adversarial Networks (GANs) have been used in machine-learning systems that only require a small amount of labelled data alongside a large amount of unlabelled data, which, as the name suggests, requires less manual work to prepare.

This approach could allow for the increased use of semi-supervised learning, where systems can learn how to carry out tasks using a far smaller amount of labelled data than is necessary for training systems using supervised learning today.

Unsupervised learning

In contrast, unsupervised learning uses a different approach, where algorithms try to identify patterns in data, looking for similarities that can be used to categorise that data.

An example might be clustering together fruits that weigh a similar amount or cars with a similar engine size.

The algorithm isn’t set up in advance to pick out specific types of data; it simply looks for data that its similarities can group, for example, Google News grouping together stories on similar topics each day.

Reinforcement learning

A crude analogy for reinforcement learning is rewarding a pet with a treat when it performs a trick. In reinforcement learning, the system attempts to maximise a reward based on its input data, basically going through a process of trial and error until it arrives at the best possible outcome.

An example of reinforcement learning is Google DeepMind’s Deep Q-network, which has been used to best human performance in a variety of classic video games. The system is fed pixels from each game and determines various information, such as the distance between objects on the screen.

By also looking at the score achieved in each game, the system builds a model of which action will maximise the score in different circumstances, for instance, in the case of the video game Breakout, where the paddle should be moved to in order to intercept the ball.

The approach is also used in robotics research, where reinforcement learning can help teach autonomous robots the optimal way to behave in real-world environments.

ai-ml-gartner-hype-cycle.jpg

Many AI-related technologies are approaching, or have already reached, the “peak of inflated expectations” in Gartner’s Hype Cycle, with the backlash-driven ‘trough of disillusionment’ lying in wait.

Image: Gartner / Annotations: ZDNet

Which are the leading firms in AI?

With AI playing an increasingly major role in modern software and services, each major tech firm is battling to develop robust machine-learning technology for use in-house and to sell to the public via cloud services.

Each regularly makes headlines for breaking new ground in AI research, although it is probably Google with its DeepMind AI AlphaFold and AlphaGo systems that have probably made the biggest impact on the public awareness of AI.

Which AI services are available?

All of the major cloud platforms — Amazon Web Services, Microsoft Azure and Google Cloud Platform — provide access to GPU arrays for training and running machine-learning models, with Google also gearing up to let users use its Tensor Processing Units — custom chips whose design is optimized for training and running machine-learning models.

All of the necessary associated infrastructure and services are available from the big three, the cloud-based data stores, capable of holding the vast amount of data needed to train machine-learning models, services to transform data to prepare it for analysis, visualisation tools to display the results clearly, and software that simplifies the building of models.

These cloud platforms are even simplifying the creation of custom machine-learning models, with Google offering a service that automates the creation of AI models, called Cloud AutoML. This drag-and-drop service builds custom image-recognition models and requires the user to have no machine-learning expertise.

Cloud-based, machine-learning services are constantly evolving. Amazon now offers a host of AWS offerings designed to streamline the process of training up machine-learning models and recently launched Amazon SageMaker Clarify, a tool to help organizations root out biases and imbalances in training data that could lead to skewed predictions by the trained model.

For those firms that don’t want to build their own machine=learning models but instead want to consume AI-powered, on-demand services, such as voice, vision, and language recognition, Microsoft Azure stands out for the breadth of services on offer, closely followed by Google Cloud Platform and then AWS. Meanwhile, IBM, alongside its more general on-demand offerings, is also attempting to sell sector-specific AI services aimed at everything from healthcare to retail, grouping these offerings together under its IBM Watson umbrella, and having invested $2bn in buying The Weather Channel to unlock a trove of data to augment its AI services.

Which of the major tech firms is winning the AI race?

amazon-echo-plus-2.jpg

Image: Jason Cipriani/ZDNet

Internally, each tech giant and others such as Facebook use AI to help drive myriad public services: serving search results, offering recommendations, recognizing people and things in photos, on-demand translation, spotting spam — the list is extensive.

But one of the most visible manifestations of this AI war has been the rise of virtual assistants, such as Apple’s Siri, Amazon’s Alexa, the Google Assistant, and Microsoft Cortana.

Relying heavily on voice recognition and natural-language processing and needing an immense corpus to draw upon to answer queries, a huge amount of tech goes into developing these assistants.

But while Apple’s Siri may have come to prominence first, it is Google and Amazon whose assistants have since overtaken Apple in the AI space — Google Assistant with its ability to answer a wide range of queries and Amazon’s Alexa with the massive number of ‘Skills’ that third-party devs have created to add to its capabilities.

Over time, these assistants are gaining abilities that make them more responsive and better able to handle the types of questions people ask in regular conversations. For example, Google Assistant now offers a feature called Continued Conversation, where a user can ask follow-up questions to their initial query, such as ‘What’s the weather like today?’, followed by ‘What about tomorrow?’ and the system understands the follow-up question also relates to the weather.

These assistants and associated services can also handle far more than just speech, with the latest incarnation of the Google Lens able to translate text into images and allow you to search for clothes or furniture using photos.

Despite being built into Windows 10, Cortana has had a particularly rough time of late, with Amazon’s Alexa now available for free on Windows 10 PCs. At the same time, Microsoft revamped Cortana’s role in the operating system to focus more on productivity tasks, such as managing the user’s schedule, rather than more consumer-focused features found in other assistants, such as playing music.  

Which countries are leading the way in AI?

It’d be a big mistake to think the US tech giants have the field of AI sewn up. Chinese firms Alibaba, Baidu, and Lenovo, invest heavily in AI in fields ranging from e-commerce to autonomous driving. As a country, China is pursuing a three-step plan to turn AI into a core industry for the country, one that will be worth 150 billion yuan ($22bn) by the end of 2020 to become the world’s leading AI power by 2030.

Baidu has invested in developing self-driving cars, powered by its deep-learning algorithm, Baidu AutoBrain. After several years of tests, with its Apollo self-driving car having racked up more than three million miles of driving in tests, it carried over 100 000 passengers in 27 cities worldwide.

Baidu launched a fleet of 40 Apollo Go Robotaxis in Beijing this year. The company’s founder has predicted that self-driving vehicles will be common in China’s cities within five years. 

The combination of weak privacy laws, huge investment, concerted data-gathering, and big data analytics by major firms like Baidu, Alibaba, and Tencent, means that some analysts believe China will have an advantage over the US when it comes to future AI research, with one analyst describing the chances of China taking the lead over the US as 500 to 1 in China’s favor.

baidu-autonomous-car.jpg

Baidu’s self-driving car, a modified BMW 3 series.

Image: Baidu

How can I get started with AI?

While you could buy a moderately powerful Nvidia GPU for your PC — somewhere around the Nvidia GeForce RTX 2060 or faster — and start training a machine-learning model, probably the easiest way to experiment with AI-related services is via the cloud.

All of the major tech firms offer various AI services, from the infrastructure to build and train your own machine-learning models through to web services that allow you to access AI-powered tools such as speech, language, vision and sentiment recognition on-demand.

How will AI change the world?

Robots and driverless cars

The desire for robots to be able to act autonomously and understand and navigate the world around them means there is a natural overlap between robotics and AI. While AI is only one of the technologies used in robotics, AI is helping robots move into new areas such as self-driving carsdelivery robots and helping robots learn new skills. At the start of 2020, General Motors and Honda revealed the Cruise Origin, an electric-powered driverless car and Waymo, the self-driving group inside Google parent Alphabet, recently opened its robotaxi service to the general public in Phoenix, Arizona, offering a service covering a 50-square mile area in the city.

Fake news

We are on the verge of having neural networks that can create photo-realistic images or replicate someone’s voice in a pitch-perfect fashion. With that comes the potential for hugely disruptive social change, such as no longer being able to trust video or audio footage as genuine. Concerns are also starting to be raised about how such technologies will be used to misappropriate people’s images, with tools already being created to splice famous faces into adult films convincingly.

Speech and language recognition

Machine-learning systems have helped computers recognise what people are saying with an accuracy of almost 95%. Microsoft’s Artificial Intelligence and Research group also reported it had developed a system that transcribes spoken English as accurately as human transcribers.

With researchers pursuing a goal of 99% accuracy, expect speaking to computers to become increasingly common alongside more traditional forms of human-machine interaction.

Meanwhile, OpenAI’s language prediction model GPT-3 recently caused a stir with its ability to create articles that could pass as being written by a human.

Facial recognition and surveillance

In recent years, the accuracy of facial recognition systems has leapt forward, to the point where Chinese tech giant Baidu says it can match faces with 99% accuracy, providing the face is clear enough on the video. While police forces in western countries have generally only trialled using facial-recognition systems at large events, in China, the authorities are mounting a nationwide program to connect CCTV across the country to facial recognition and to use AI systems to track suspects and suspicious behavior, and has also expanded the use of facial-recognition glasses by police.

Although privacy regulations vary globally, it’s likely this more intrusive use of AI technology — including AI that can recognize emotions — will gradually become more widespread. However, a growing backlash and questions about the fairness of facial recognition systems have led to Amazon, IBM and Microsoft pausing or halting the sale of these systems to law enforcement.

Healthcare

AI could eventually have a dramatic impact on healthcare, helping radiologists to pick out tumors in x-rays, aiding researchers in spotting genetic sequences related to diseases and identifying molecules that could lead to more effective drugs. The recent breakthrough by Google’s AlphaFold 2 machine-learning system is expected to reduce the time taken during a key step when developing new drugs from months to hours.

There have been trials of AI-related technology in hospitals across the world. These include IBM’s Watson clinical decision support tool, which oncologists train at Memorial Sloan Kettering Cancer Center, and the use of Google DeepMind systems by the UK’s National Health Service, where it will help spot eye abnormalities and streamline the process of screening patients for head and neck cancers.

Reinforcing discrimination and bias 

A growing concern is the way that machine-learning systems can codify the human biases and societal inequities reflected in their training data. These fears have been borne out by multiple examples of how a lack of variety in the data used to train such systems has negative real-world consequences. 

In 2018, an MIT and Microsoft research paper found that facial recognition systems sold by major tech companies suffered from error rates that were significantly higher when identifying people with darker skin, an issue attributed to training datasets being composed mainly of white men.

Another study a year later highlighted that Amazon’s Rekognition facial recognition system had issues identifying the gender of individuals with darker skin, a charge that was challenged by Amazon executives, prompting one of the researchers to address the points raised in the Amazon rebuttal.

Since the studies were published, many of the major tech companies have, at least temporarily, ceased selling facial recognition systems to police departments.

Another example of insufficiently varied training data skewing outcomes made headlines in 2018 when Amazon scrapped a machine-learning recruitment tool that identified male applicants as preferable. Today research is ongoing into ways to offset biases in self-learning systems.

AI and global warming

As the size of machine-learning models and the datasets used to train them grows, so does the carbon footprint of the vast compute clusters that shape and run these models. The environmental impact of powering and cooling these compute farms was the subject of a paper by the World Economic Forum in 2018. One 2019 estimate was that the power required by machine-learning systems is doubling every 3.4 months.

The issue of the vast amount of energy needed to train powerful machine-learning models was brought into focus recently by the release of the language prediction model GPT-3, a sprawling neural network with some 175 billion parameters. 

While the resources needed to train such models can be immense, and largely only available to major corporations, once trained the energy needed to run these models is significantly less. However, as demand for services based on these models grows, power consumption and the resulting environmental impact again becomes an issue.

One argument is that the environmental impact of training and running larger models needs to be weighed against the potential machine learning has to have a significant positive impact, for example, the more rapid advances in healthcare that look likely following the breakthrough made by Google DeepMind’s AlphaFold 2.

Will AI kill us all?

Again, it depends on who you ask. As AI-powered systems have grown more capable, so warnings of the downsides have become more dire.

Tesla and SpaceX CEO Elon Musk has claimed that AI is a “fundamental risk to the existence of human civilization”. As part of his push for stronger regulatory oversight and more responsible research into mitigating the downsides of AI, he set up OpenAI, a non-profit artificial intelligence research company that aims to promote and develop friendly AI that will benefit society as a whole. Similarly, the esteemed physicist Stephen Hawking warned that once a sufficiently advanced AI is created, it will rapidly advance to the point at which it vastly outstrips human capabilities. A phenomenon is known as a singularity and could pose an existential threat to the human race.

Yet, the notion that humanity is on the verge of an AI explosion that will dwarf our intellect seems ludicrous to some AI researchers.

Chris Bishop, Microsoft’s director of research in Cambridge, England, stresses how different the narrow intelligence of AI today is from the general intelligence of humans, saying that when people worry about “Terminator and the rise of the machines and so on? Utter nonsense, yes. At best, such discussions are decades away.”

Will an AI steal your job?

14-amazon-kiva.png

Amazon

The possibility of artificially intelligent systems replacing much of modern manual labour is perhaps a more credible near-future possibility.

While AI won’t replace all jobs, what seems to be certain is that AI will change the nature of work, with the only question being how rapidly and how profoundly automation will alter the workplace.

There is barely a field of human endeavour that AI doesn’t have the potential to impact. As AI expert Andrew Ng puts it: “many people are doing routine, repetitive jobs. Unfortunately, technology is especially good at automating routine, repetitive work”, saying he sees a “significant risk of technological unemployment over the next few decades”.

The evidence of which jobs will be supplanted is starting to emerge. There are now 27 Amazon Go stores and cashier-free supermarkets where customers just take items from the shelves and walk out in the US. What this means for the more than three million people in the US who work as cashiers remains to be seen. Amazon again is leading the way in using robots to improve efficiency inside its warehouses. These robots carry shelves of products to human pickers who select items to be sent out. Amazon has more than 200 000 bots in its fulfilment centers, with plans to add more. But Amazon also stresses that as the number of bots has grown, so has the number of human workers in these warehouses. However, Amazon and small robotics firms are working on automating the remaining manual jobs in the warehouse, so it’s not a given that manual and robotic labor will continue to grow hand-in-hand.

Fully autonomous self-driving vehicles aren’t a reality yet, but by some predictions, the self-driving trucking industry alone is poised to take over 1.7 million jobs in the next decade, even without considering the impact on couriers and taxi drivers.

Yet, some of the easiest jobs to automate won’t even require robotics. At present, there are millions of people working in administration, entering and copying data between systems, chasing and booking appointments for companies as software gets better at automatically updating systems and flagging the important information, so the need for administrators will fall.

As with every technological shift, new jobs will be created to replace those lost. However, what’s uncertain is whether these new roles will be created rapidly enough to offer employment to those displaced and whether the newly unemployed will have the necessary skills or temperament to fill these emerging roles.

Not everyone is a pessimist. For some, AI is a technology that will augment rather than replace workers. Not only that, but they argue there will be a commercial imperative to not replace people outright, as an AI-assisted worker — think a human concierge with an AR headset that tells them exactly what a client wants before they ask for it — will be more productive or effective than an AI working on its own.

There’s a broad range of opinions about how quickly artificially intelligent systems will surpass human capabilities among AI experts.

Oxford University’s Future of Humanity Institute asked several hundred machine-learning experts to predict AI capabilities over the coming decades.

Notable dates included AI writing essays that could pass for being written by a human by 2026, truck drivers being made redundant by 2027, AI surpassing human capabilities in retail by 2031, writing a best-seller by 2049, and doing a surgeon’s work by 2053.

They estimated there was a relatively high chance that AI beats humans at all tasks within 45 years and automates all human jobs within 120 years.

See More:

IBM adds Watson tools for reading comprehension, FAQ extraction.

Related coverage

How ML and AI will transform business intelligence and analytics
Machine learning and artificial intelligence advances in five areas will ease data prep, discovery, analysis, prediction, and data-driven decision making.

Report: Artificial intelligence is creating jobs, generating economic gains
A new study from Deloitte shows that early adopters of cognitive technologies are positive about their current and future roles.

AI and jobs: Where humans are better than algorithms, and vice versa
It’s easy to get caught up in the doom-and-gloom predictions about artificial intelligence wiping out millions of jobs. Here’s a reality check.

How artificial intelligence is unleashing a new type of cybercrime (TechRepublic)
Rather than hiding behind a mask to rob a bank, criminals are now hiding behind artificial intelligence to make their attack. However, financial institutions can use AI as well to combat these crimes.

Elon Musk: Artificial intelligence may spark World War III (CNET)
The serial CEO is already fighting the science fiction battles of tomorrow, and he remains more concerned about killer robots than anything else.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.zdnet.com/article/what-is-ai-heres-everything-you-need-to-know-about-artificial-intelligence/#ftag=RSSbaffb68

Continue Reading

ZDNET

Even after Emotet takedown, Office docs deliver 43% of all malware downloads now

Published

on

Malware delivered over the cloud increased by 68% in Q2, according to data from cybersecurity firm Netskope.

ZDNet Recommends

The company released the fifth edition of its Cloud and Threat Report that covers the cloud data risks, threats and trends they see throughout the quarter. 

The report noted that cloud storage apps account for more than 66% of cloud malware delivery.

“In Q2 2021, 43% of all malware downloads were malicious Office docs, compared to just 20% at the beginning of 2020. This increase comes even after the Emotet takedown, indicating that other groups observed the success of the Emotet crew and have adopted similar techniques,” the report said. 

“Collaboration apps and development tools account for the next largest percentage, as attackers abuse popular chat apps and code repositories to deliver malware. In total, Netskope detected and blocked malware downloads originating from 290 distinct cloud apps in the first half of 2021.”

screen-shot-2021-07-22-at-12-48-20-am.png
Netskope

The researchers behind the report explained that cybercriminals deliver malware through cloud apps “to bypass blocklists and take advantage of any app-specific allow lists.” Cloud service providers generally remove most malware immediately, but some attackers have found ways to do significant damage in the short time they spend undetected in a system. 

According to the company’s researchers, about 35% of all workloads are also exposed to the public internet within AWS, Azure, and GCP, with public IP addresses that are reachable from anywhere on the internet.

RDP servers — which they say have become “a popular infiltration vector for attackers” — were exposed in 8.3% of workloads. The average company with anywhere between 500 and 2000 employees now deploys 805 distinct apps and cloud services, with 97% of those being “unmanaged and often freely adopted by business units and users.”

The rapid adoption of enterprise cloud apps has continued into 2021, with data showing adoption is up 22% for the first half of the year. But, the report notes that “97% of cloud apps used in the enterprise are shadowing IT, unmanaged and often freely adopted by business units and users.”

There are also issues raised in the report about employee habits, both at the workplace and at home. The report raises concerns about the nearly universal trend of employees authorizing at least one third-party app in Google Workspace

Netskope’s report says employees leaving an organization upload three times more data to their personal apps in the final 30 days of employment. 

The uploads are leaving company data exposed because much of it is uploaded to personal Google Drive and Microsoft OneDrive, which are popular targets for cyberattackers. According to Netskope’s findings, 15% “either upload files that were copied directly from managed app instances or that violate a corporate data policy.”

The researchers also add that remote work is still in full swing as of the end of June 2021, with 70% of users surveyed still working remotely. 

“At the beginning of the pandemic, when users began working from home, we saw a spike in users visiting risky websites, including adult content, file sharing, and piracy websites,” the report added. 

“Over time, this risky web surfing subsided as users presumably became more accustomed to working from home, and IT teams were able to coach users on acceptable use policies.”

The report touts the decline in risky browsing but also highlights the “growing danger of malicious Office documents” and cloud configurations as particularly thorny problems. 

Joseph Carson, chief security scientist and advisory CISO at ThycoticCentrify, said the change to a hybrid work environment last year meant that cybersecurity needed to evolve from being perimeter and network-based to one that is focused on cloud, identity and privileged access management.  

“Organizations must continue to adapt and prioritize managing and securing access to the business applications and data, such as that similar to the BYOD types of devices, and that means further segregation networks for untrusted devices but secured with strong privileged access security controls to enable productivity and access,” Carson said. 

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.zdnet.com/article/even-after-emotet-takedown-office-docs-deliver-43-of-all-malware-downloads-now/#ftag=RSSbaffb68

Continue Reading
Esports4 days ago

How to reduce lag and increase FPS in Pokémon Unite

Esports5 days ago

Coven skins for Ashe, Evelynn, Ahri, Malphite, Warwick, Cassiopeia revealed for League of Legends

Esports4 days ago

Will New World closed beta progress carry over to the game’s full release?

Esports4 days ago

How to add friends and party up in New World

Esports4 days ago

Can you sprint in New World?

Esports4 days ago

How to claim New World Twitch drops

Esports4 days ago

Twitch streamer gets banned in New World after milking cow

AR/VR4 days ago

Moth+Flame partners with US Air Force to launch Virtual Reality sexual assault prevention and response training

Blockchain5 days ago

Uniswap (UNI) and AAVE Technical Analysis: What to Expect?

Blockchain5 days ago

Rothschild Investment Purchases Grayscale Bitcoin and Ethereum Trusts Shares

Esports5 days ago

Konami unveils Yu-Gi-Oh! Master Duel, a digital version of the Yu-Gi-Oh! TCG and OCG formats

Esports4 days ago

How to change or join a new world in New World

Esports4 days ago

Best Akshan builds in League of Legends

Esports4 days ago

How to turn off and on PvP in New World

Esports4 days ago

Here are all the servers in the New World closed beta

Esports5 days ago

Team BDS adds GatsH to VALORANT roster as sixth man before EU Stage 3 Challengers 2

Esports5 days ago

Overwatch League 2021 Grand Finals to be held in Los Angeles, playoff bracket in Dallas

Blockchain5 days ago

NexWEB Technologies Chooses Butterfly Protocol for Powering its Blockchain Domain-Based NFT Platform

Gaming5 days ago

Why Is It Better to Play Slots Using Cryptocurrency?

Esports9 hours ago

Who won Minecraft Championships (MCC) 15? | Final Standings and Scores

Trending