Zephyrnet Logo

Quantum tomography of an entangled three-qubit state in silicon

Date:

  • 1.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • 2.

    Dicarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    CAS  Article  Google Scholar 

  • 3.

    Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    Article  CAS  Google Scholar 

  • 5.

    Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 323, 1326–1330 (2009).

    Article  Google Scholar 

  • 6.

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–544 (2012).

    CAS  Article  Google Scholar 

  • 7.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    CAS  Article  Google Scholar 

  • 8.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    CAS  Article  Google Scholar 

  • 10.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Article  Google Scholar 

  • 14.

    Yang, C. H. et al. Silicon quantum processor unit cell operation above one Kelvin. Nature 580, 350–354 (2020).

    CAS  Article  Google Scholar 

  • 15.

    Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    CAS  Article  Google Scholar 

  • 16.

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  CAS  Google Scholar 

  • 17.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    Article  Google Scholar 

  • 18.

    Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Yoneda, J. et al. Quantum non-demolition readout of an electron spin in silicon. Nat. Commun. 11, 1144 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Xue, X. et al. Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X 10, 021006 (2020).

    CAS  Google Scholar 

  • 21.

    Qiao, H. et al. Coherent multi-spin exchange coupling in a quantum-dot spin chain. Phys. Rev. X 10, 31006 (2020).

    CAS  Google Scholar 

  • 22.

    Zajac, D. M., Hazard, T. M., Mi, X., Nielsen, E. & Petta, J. R. Scalable gate architecture for densely packed semiconductor spin qubits. Phys. Rev. Appl. 6, 054013 (2016).

    Article  CAS  Google Scholar 

  • 23.

    Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051–2055 (2007).

    CAS  Article  Google Scholar 

  • 24.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    CAS  Article  Google Scholar 

  • 25.

    Sigillito, A. J., Gullans, M. J., Edge, L. F., Borselli, M. & Petta, J. R. Coherent transfer of quantum information in silicon using resonant SWAP gates. npj Quantum Inf. 5, 110 (2019).

    Article  Google Scholar 

  • 26.

    Takeda, K., Noiri, A., Yoneda, J., Nakajima, T. & Tarucha, S. Resonantly driven singlet-triplet spin qubit in silicon. Phys. Rev. Lett. 124, 117701 (2020).

    CAS  Article  Google Scholar 

  • 27.

    Tokura, Y., Van Der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  CAS  Google Scholar 

  • 28.

    Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

    Article  CAS  Google Scholar 

  • 29.

    Borjans, F., Zajac, D. M., Hazard, T. M. & Petta, J. R. Single-spin relaxation in a synthetic spin–orbit field. Phys. Rev. Appl. 11, 044063 (2018).

    Article  Google Scholar 

  • 30.

    Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  CAS  Google Scholar 

  • 31.

    Meunier, T., Calado, V. E. & Vandersypen, L. M. K. Efficient controlled-phase gate for single-spin qubits in quantum dots. Phys. Rev. B 83, 121403(R) (2011).

    Article  CAS  Google Scholar 

  • 32.

    Martins, F. et al. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016).

    Article  CAS  Google Scholar 

  • 33.

    Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    CAS  Article  Google Scholar 

  • 36.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990).

    CAS  Article  Google Scholar 

  • 38.

    Connors, E. J., Nelson, J., Qiao, H., Edge, L. F. & Nichol, J. M. Low-frequency charge noise in Si/SiGe quantum dots. Phys. Rev. B 100, 165305 (2019).

    CAS  Article  Google Scholar 

  • 39.

    Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    Article  CAS  Google Scholar 

  • 40.

    Mueller, F. et al. Printed circuit board metal powder filters for low electron temperatures. Rev. Sci. Instrum. 84, 044706 (2013).

    Article  CAS  Google Scholar 

  • 41.

    Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007).

    Article  CAS  Google Scholar 

  • 42.

    Noiri, A. et al. Radio-frequency detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).

    CAS  Article  Google Scholar 

  • 43.

    Andrews, R. W. et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. Nat. Nanotechnol. 14, 747–750 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Jones, A. M. et al. Spin-blockade spectroscopy of Si/Si–Ge quantum dots. Phys. Rev. Appl. 12, 014026 (2019).

    CAS  Article  Google Scholar 

  • 46.

    Newville, M., Stensitzki, T., Allen, D. & Ingargiola, A. LMFIT: non-linear least-square minimization and curve-fitting for Python. Zenodo https://zenodo.org/record/11813#.YH6fbej7SUl (2014).

  • 47.

    Jones, E., Oliphant, T. & Peterson, P. SciPy: open source scientific tools for Python. Science Open https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9 (2001).

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00925-0

    spot_img

    Latest Intelligence

    spot_img