Zephyrnet Logo

Compilação por esparsificação hamiltoniana estocástica

Data:

Yingkai Ouyang1, David R. White1e Earl T. Campbell1,2

1Departamento de Física e Astronomia, Universidade de Sheffield, Sheffield, Reino Unido
2Riverlane, Cambridge, Reino Unido

Acha este artigo interessante ou deseja discutir? Scite ou deixe um comentário no SciRate.

Sumário

Simulation of quantum chemistry is expected to be a principal application of quantum computing. In quantum simulation, a complicated Hamiltonian describing the dynamics of a quantum system is decomposed into its constituent terms, where the effect of each term during time-evolution is individually computed. For many physical systems, the Hamiltonian has a large number of terms, constraining the scalability of established simulation methods. To address this limitation we introduce a new scheme that approximates the actual Hamiltonian with a sparser Hamiltonian containing fewer terms. By stochastically sparsifying weaker Hamiltonian terms, we benefit from a quadratic suppression of errors relative to deterministic approaches. Relying on optimality conditions from convex optimisation theory, we derive an appropriate probability distribution for the weaker Hamiltonian terms, and compare its error bounds with other probability ansatzes for some electronic structure Hamiltonians. Tuning the sparsity of our approximate Hamiltonians allows our scheme to interpolate between two recent random compilers: qDRIFT and randomized first order Trotter. Our scheme is thus an algorithm that combines the strengths of randomised Trotterisation with the efficiency of qDRIFT, and for intermediate gate budgets, outperforms both of these prior methods.

► dados BibTeX

► Referências

[1] A. Aspuru-Guzik. Simulated quantum computation of molecular energies. Science, 309 (5741): 1704–1707, September 2005. 10.1126/​science.1113479.
https: / / doi.org/ 10.1126 / science.1113479

[2] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A, 91: 022311, Feb 2015. 10.1103/​PhysRevA.91.022311.
https: / / doi.org/ 10.1103 / PhysRevA.91.022311

[3] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X, 8: 041015, Oct 2018a. 10.1103/​PhysRevX.8.041015.
https: / / doi.org/ 10.1103 / PhysRevX.8.041015

[4] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan. Low-depth quantum simulation of materials. Phys. Rev. X, 8: 011044, Mar 2018b. 10.1103/​PhysRevX.8.011044.
https: / / doi.org/ 10.1103 / PhysRevX.8.011044

[5] H. Beinert. Iron-sulfur clusters: Nature’s modular, multipurpose structures. Science, 277 (5326): 653–659, August 1997. 10.1126/​science.277.5326.653.
https: / / doi.org/ 10.1126 / science.277.5326.653

[6] Dominic W Berry. A random approach to quantum simulation. Physics, 12: 91, 2019. 10.1103/​physics.12.91.
https: / / doi.org/ 10.1103 / physics.12.91

[7] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. Exponential improvement in precision for simulating sparse Hamiltonians. Forum of Mathematics, Sigma, 5, 2017. 10.1017/​fms.2017.2.
https://​/​doi.org/​10.1017/​fms.2017.2

[8] Dominic W Berry, Andrew M Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with ${L}^{1}$-norm scaling. arXiv preprint arXiv:1906.07115, 2019a.
arXiv: 1906.07115

[9] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush. Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization. Quantum, 3: 208, December 2019b. ISSN 2521-327X. 10.22331/​q-2019-12-02-208.
https:/​/​doi.org/​10.22331/​q-2019-12-02-208

[10] Sergey Bravyi and Jeongwan Haah. Quantum Self-Correction in the 3D Cubic Code Model. Phys. Rev. Lett., 111 (20): 200501, November 2013. 10.1103/​PhysRevLett.111.200501.
https: / / doi.org/ 10.1103 / PhysRevLett.111.200501

[11] Earl Campbell. Shorter gate sequences for quantum computing by mixing unitaries. Phys. Rev. A, 95: 042306, Apr 2017. 10.1103/​PhysRevA.95.042306.
https: / / doi.org/ 10.1103 / PhysRevA.95.042306

[12] Earl Campbell. Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett., 123: 070503, Aug 2019. 10.1103/​PhysRevLett.123.070503.
https: / / doi.org/ 10.1103 / PhysRevLett.123.070503

[13] Andrew M. Childs and Dominic W. Berry. Black-box Hamiltonian simulation and unitary implementation. Quantum Information and Computation, 12 (1-2), 2012. 10.26421/​qic12.1-2.
https: / / doi.org/ 10.26421 / qic12.1-2

[14] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross e Yuan Su. Em direção à primeira simulação quântica com aceleração quântica. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. ISSN 0027-8424. 10.1073 / pnas.1801723115.
https: / / doi.org/ 10.1073 / pnas.1801723115

[15] Andrew M. Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by randomization. Quantum, 3: 182, September 2019. 10.22331/​q-2019-09-02-182.
https:/​/​doi.org/​10.22331/​q-2019-09-02-182

[16] Matthew B. Hastings. Turning gate synthesis errors into incoherent errors. Quantum Info. Comput., 17 (5-6): 488–494, March 2017. ISSN 1533-7146. 10.26421/​QIC17.5-6.
https: / / doi.org/ 10.26421 / QIC17.5-6

[17] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8: 031022, Jul 2018. 10.1103/​PhysRevX.8.031022.
https: / / doi.org/ 10.1103 / PhysRevX.8.031022

[18] William J. Huggins, Jarrod McClean, Nicholas Rubin, Zhang Jiang, Nathan Wiebe, K. Birgitta Whaley, and Ryan Babbush. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. arXiv:1907.13117, 2019.
arXiv: 1907.13117

[19] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Soc., 2002. 10.1090/​gsm/​047.
https: / / doi.org/ 10.1090 / gsm / 047

[20] Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan e Ryan Babbush. Simulação quântica de estrutura eletrônica com profundidade linear e conectividade. Física Rev. Lett., 120: 110501, março de 2018. 10.1103/​PhysRevLett.120.110501.
https: / / doi.org/ 10.1103 / PhysRevLett.120.110501

[21] Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via Trotterization. arXiv:1902.10673, 2019a.
arXiv: 1902.10673

[22] Ian D. Kivlichan, Christopher E. Granade, and Nathan Wiebe. Phase estimation with randomized Hamiltonians. arXiv:1907.10070, 2019b.
arXiv: 1907.1007
0

[23] Zhaokai Li, Xiaomei Liu, Hefeng Wang, Sahel Ashhab, Jiangyu Cui, Hongwei Chen, Xinhua Peng, and Jiangfeng Du. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 122: 090504, Mar 2019. 10.1103/​PhysRevLett.122.090504.
https: / / doi.org/ 10.1103 / PhysRevLett.122.090504

[24] G Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (2): 119–130, 1976. ISSN 0010-3616. 10.1007/​BF01608499.
https: / / doi.org/ 10.1007 / BF01608499

[25] S. Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, August 1996. 10.1126/​science.273.5278.1073.
https: / / doi.org/ 10.1126 / science.273.5278.1073

[26] Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quantum signal processing. Physical Review Letters, 118 (1), January 2017. 10.1103/​physrevlett.118.010501.
https: / / doi.org/ 10.1103 / physrevlett.118.010501

[27] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, July 2019. 10.22331/​q-2019-07-12-163.
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

[28] Guang Hao Low and Nathan Wiebe. Hamiltonian simulation in the interaction picture. arXiv:1805.00675, 2018.
arXiv: 1805.00675

[29] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan. Quantum computational chemistry. arXiv preprint arXiv:1808.10402, 2018.
arXiv: 1808.10402

[30] Jarrod R McClean, Ian D Kivlichan, Kevin J Sung, Damian S Steiger, Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, et al. OpenFermion: the electronic structure package for quantum computers. arXiv preprint arXiv:1710.07629, 2017.
arXiv: 1710.07629

[31] Jarrod R. McClean, Fabian M. Faulstich, Qinyi Zhu, Bryan O’Gorman, Yiheng Qiu, Steven R. White, Ryan Babbush, and Lin Lin. Discontinuous Galerkin discretization for quantum simulation of chemistry. arXiv:1909.00028, 2019.
arXiv: 1909.00028

[32] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. 10.1007/​b98874.
https: / / doi.org/ 10.1007 / b98874

[33] PJJ O'Malley, R. Babbush, ID Kivlichan, J. Romero, JR McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen , B. Chiaro, A. Dunsworth, AG Fowler, E. Jeffrey, E. Lucero, A. Megrant, JY Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner , TC White, PV Coveney, PJ Love, H. Neven, A. Aspuru-Guzik e JM Martinis. Simulação quântica escalável de energias moleculares. Física Rev. X, 6: 031007, julho de 2016. 10.1103/​PhysRevX.6.031007.
https: / / doi.org/ 10.1103 / PhysRevX.6.031007

[34] David Poulin, M. B. Hastings, D. Wecker, N. Wiebe, Andrew C. Doberty, and M. Troyer. The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Information & Computation, 15 (5-6): 0361–0384, 2015. 10.26421/​qic15.5-6.
https: / / doi.org/ 10.26421 / qic15.5-6

[35] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114 (29): 7555–7560, July 2017. 10.1073/​pnas.1619152114.
https: / / doi.org/ 10.1073 / pnas.1619152114

[36] Kanav Setia and James D. Whitfield. Bravyi-Kitaev superfast simulation of electronic structure on a quantum computer. The Journal of Chemical Physics, 148 (16): 164104, April 2018. 10.1063/​1.5019371.
https: / / doi.org/ 10.1063 / 1.5019371

[37] Rolando D. Somma. A Trotter-Suzuki approximation for lie groups with applications to Hamiltonian simulation. Journal of Mathematical Physics, 57 (6): 062202, June 2016. 10.1063/​1.4952761.
https: / / doi.org/ 10.1063 / 1.4952761

[38] Masuo Suzuki. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Comm. Math. Phys., 51 (2): 183–190, 1976. 10.1007/​bf01609348.
https: / / doi.org/ 10.1007 / bf01609348

[39] Masuo Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A, 146 (6): 319–323, June 1990. 10.1016/​0375-9601(90)90962-n.
https:/​/​doi.org/​10.1016/​0375-9601(90)90962-n

[40] Masuo Suzuki. Teoria geral de integrais de caminho fractal com aplicações a teorias de muitos corpos e física estatística. Journal of Mathematical Physics, 32 (2): 400–407, fevereiro de 1991. 10.1063/1.529425.
https: / / doi.org/ 10.1063 / 1.529425

[41] Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K Fährmann, Barthélémy Meynard-Piganeau, and Jens Eisert. Stochastic gradient descent for hybrid quantum-classical optimization. arXiv preprint arXiv:1910.01155, 2019.
arXiv: 1910.01155

[42] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A, 90: 022305, Aug 2014a. 10.1103/​PhysRevA.90.022305.
https: / / doi.org/ 10.1103 / PhysRevA.90.022305

[43] Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A, 90: 022305, Aug 2014b. 10.1103/​PhysRevA.90.022305.
https: / / doi.org/ 10.1103 / PhysRevA.90.022305

[44] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109 (5): 735–750, March 2011. 10.1080/​00268976.2011.552441.
htt
ps:/​/​doi.org/​10.1080/​00268976.2011.552441

Citado por

[1] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, e Xiao Yuan, "Quantum computational chemistry", arXiv: 1808.10402.

[2] Yingkai Ouyang, “Quantum storage in quantum ferromagnets”, arXiv: 1904.01458.

[3] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe e Shuchen Zhu, "A Theory of Trotter Error", arXiv: 1912.08854.

As citações acima são de SAO / NASA ADS (última atualização com êxito 2020-02-27 23:49:47). A lista pode estar incompleta, pois nem todos os editores fornecem dados de citação adequados e completos.

On Serviço citado por Crossref nenhum dado sobre a citação de trabalhos foi encontrado (última tentativa 2020-02-27 23:49:45).

Fonte: https://quantum-journal.org/papers/q-2020-02-27-235/

local_img

Inteligência mais recente

local_img

Fale Conosco

Olá! Como posso ajudá-lo?