Zephyrnet Logo

Prospects for carbon-negative biomanufacturing

Date:

    • Galán-Martín Á.
    • et al.

    Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries.

    One Earth. 2021; 4: 565-583

    • Liadze I.
    • et al.

    The Economic Costs of the Russia-Ukraine Conflict.

    National Institute of Economic and Social Research,
    2022

    • Larson E.
    • et al.

    Net-Zero America: Potential Pathways, Infrastructure, and Impacts.

    Princeton University,
    2021

    • Wang Y.
    • et al.

    A carbon-negative route for sustainable production of aromatics from biomass-derived aqueous oxygenates.

    Appl. Catal. B. 2022; 307121139

    • Vögeli B.
    • et al.

    Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria.

    Nat. Commun. 2022; 13: 3058

    • Liew F.E.
    • et al.

    Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.

    Nat. Biotechnol. 2022; 40: 335-344

    • Corona A.
    • et al.

    Life cycle assessment of adipic acid production from lignin.

    Green Chem. 2018; 20: 3857-3866

    • Zhang Y.-H.P.
    • et al.

    Biomanufacturing: history and perspective.

    J. Ind. Microbiol. Biotechnol. 2017; 44: 773-784

    • Jullesson D.
    • et al.

    Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Biotechnol. Adv. 2015; 33: 1395-1402

    • Scown C.D.
    • Keasling J.D.

    Sustainable manufacturing with synthetic biology.

    Nat. Biotechnol. 2022; 40: 304-307

    • Rodríguez Y.
    • et al.

    Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor.

    Waste Manag. 2020; 113: 395-403

    • Köpke M.
    • Simpson S.D.

    Pollution to products: recycling of “above ground” carbon by gas fermentation.

    Curr. Opin. Biotechnol. 2020; 65: 180-189

    • Yang M.
    • et al.

    Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 8639-8648

    • Yang M.
    • et al.

    Comparing in planta accumulation with microbial routes to set targets for a cost-competitive bioeconomy.

    Proc. Natl. Acad. Sci. U. S. A. 2022; 119e2122309119

    • Adom F.
    • et al.

    Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    Environ. Sci. Technol. 2014; 48: 14624-14631

    • Montazeri M.
    • et al.

    Meta-analysis of life cycle energy and greenhouse gas emissions for priority biobased chemicals.

    ACS Sustain. Chem. Eng. 2016; 4: 6443-6454

    • Shaji A.
    • et al.

    Economic and environmental assessment of succinic acid production from sugarcane bagasse.

    ACS Sustain. Chem. Eng. 2021; 9: 12738-12746

    • Semba T.
    • et al.

    Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate.

    J. Clean. Prod. 2018; 195: 932-938

    • Tanzer S.E.
    • Ramírez A.

    When are negative emissions negative emissions?.

    Energy Environ. Sci. 2019; 12: 1210-1218

    • Fuss S.
    • et al.

    Negative emissions—Part 2: costs, potentials and side effects.

    Environ. Res. Lett. 2018; 13063002

    • Goll D.S.
    • et al.

    Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock.

    Nat. Geosci. 2021; 14: 545-549

    • Yang Y.
    • et al.

    Soil carbon sequestration accelerated by restoration of grassland biodiversity.

    Nat. Commun. 2019; 10: 718

    • Chou A.
    • et al.

    An orthogonal metabolic framework for one-carbon utilization.

    Nat. Metab. 2021; 3: 1385-1399

    • Yang M.
    • et al.

    Cost and life-cycle greenhouse gas implications of integrating biogas upgrading and carbon capture technologies in cellulosic biorefineries.

    Environ. Sci. Technol. 2020; 54: 12810-12819

    • Humbird D.

    Scale-up economics for cultured meat.

    Biotechnol. Bioeng. 2021; 118: 3239-3250

    • Smith P.B.

    Bio-based sources for terephthalic acid.

    in: Cheng H.N. Green Polymer Chemistry: Biobased Materials and Biocatalysis. American Chemical Society,
    2015: 453-469

    • Lee S.Y.
    • et al.

    A comprehensive metabolic map for production of bio-based chemicals.

    Nat. Catal. 2019; 2: 18-33

    • He Y.
    • et al.

    Metabolic engineering of Zymomonas mobilis for ethylene production from straw hydrolysate.

    Appl. Microbiol. Biotechnol. 2021; 105: 1709-1720

    • Copeland R.A.
    • et al.

    Hybrid radical-polar pathway for excision of ethylene from 2-oxoglutarate by an iron oxygenase.

    Science. 2021; 373: 1489-1493

    • Wang B.
    • et al.

    A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria.

    Nat. Commun. 2021; 12: 5150

    • Ding Y.
    • et al.

    Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids.

    J. Am. Chem. Soc. 2019; 141: 10272-10282

    • Hoang Nguyen Tran P.
    • et al.

    Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.

    Biotechnol. Biofuels. 2020; 13: 12

    • Huang S.
    • et al.

    Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.

    Bioprocess Biosyst. Eng. 2019; 42: 883-896

    • Lee K.
    • et al.

    Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.

    Microb. Cell Factories. 2019; 18: 79

    • Liu C.
    • et al.

    A systematic optimization of styrene biosynthesis in Escherichia coli BL21(DE3).

    Biotechnol. Biofuels. 2018; 11: 14

    • Grubbe W.S.
    • et al.

    Cell-free styrene biosynthesis at high titers.

    Metab. Eng. 2020; 61: 89-95

    • Liang L.
    • et al.

    Genome engineering of E. coli for improved styrene production.

    Metab. Eng. 2020; 57: 74-84

    • Islam M.A.
    • et al.

    Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas.

    Metab. Eng. 2017; 41: 173-181

    • Uranukul B.
    • et al.

    Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes.

    Metab. Eng. 2019; 51: 20-31

    • Chae T.U.
    • et al.

    Production of ethylene glycol from xylose by metabolically engineered Escherichia coli.

    AICHE J. 2018; 64: 4193-4200

    • Veeravalli S.S.
    • Mathews A.P.

    Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol.

    Appl. Microbiol. Biotechnol. 2018; 102: 8023-8033

    • Veeravalli S.S.
    • Mathews A.P.

    A novel low pH fermentation process for the production of acetate and propylene glycol from carbohydrate wastes.

    Enzym. Microb. Technol. 2019; 120: 8-15

    • Capilla M.
    • et al.

    The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792.

    Biochem. Eng. J. 2021; 167107910

    • Sherkhanov S.
    • et al.

    Isobutanol production freed from biological limits using synthetic biochemistry.

    Nat. Commun. 2020; 11: 4292

    • Noda S.
    • et al.

    Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.

    Microb. Cell Factories. 2019; 18: 124

    • Promdonkoy P.
    • et al.

    Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.

    J. Ind. Microbiol. Biotechnol. 2020; 47: 497-510

    • Song H.-S.
    • et al.

    Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli.

    Biotechnol. Bioeng. 2018; 115: 1971-1978

    • Ankenbauer A.
    • et al.

    Micro-aerobic production of isobutanol with engineered Pseudomonas putida.

    Eng. Life Sci. 2021; 21: 475-488

    • Ko Y.-S.
    • et al.

    A novel biosynthetic pathway for the production of acrylic acid through β-alanine route in Escherichia coli.

    ACS Synth. Biol. 2020; 9: 1150-1159

    • Oliveira A.
    • et al.

    A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli.

    PLoS Comput. Biol. 2021; 17e1008704

    • Shin J.H.
    • et al.

    Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid.

    Microb. Cell Factories. 2021; 20: 155

    • Raj K.
    • et al.

    Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae.

    Metab. Eng. Commun. 2018; 6: 28-32

    • Hao T.
    • et al.

    Engineering the reductive TCA pathway to dynamically regulate the biosynthesis of adipic acid in Escherichia coli.

    ACS Synth. Biol. 2021; 10: 632-639

    • Kruyer N.S.
    • et al.

    Fully biological production of adipic acid analogs from branched catechols.

    Sci. Rep. 2020; 10: 13367

    • Silva R.G.C.
    • et al.

    Identification of potential technologies for 1,4-butanediol production using prospecting methodology.

    J. Chem. Technol. Biotechnol. 2020; 95: 3057-3070

    • Pooth V.
    • et al.

    Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability.

    Biotechnol. Prog. 2020; 36e2917

    • Wang J.
    • et al.

    Bacterial synthesis of C3-C5 diols via extending amino acid catabolism.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 19159-19167

    • Wang C.
    • et al.

    Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16.

    Biotechnol. Biofuels. 2018; 11: 12

    • Mitsui R.
    • et al.

    Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production.

    Appl. Microbiol. Biotechnol. 2020; 104: 9147-9158

    • Grewal J.
    • Khare S.K.

    One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis.

    Bioresour. Technol. 2018; 251: 268-273

    • Yamada R.
    • et al.

    Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.

    World J. Microbiol. Biotechnol. 2019; 35: 37

    • Li G.
    • et al.

    Advances in microbial production of medium-chain dicarboxylic acids for nylon materials.

    React. Chem. Eng. 2020; 5: 221-238

    • Jeon W.-Y.
    • et al.

    Microbial production of sebacic acid from a renewable source: production, purification, and polymerization.

    Green Chem. 2019; 21: 6491-6501

    • Yun J.
    • et al.

    Co-fermentation of glycerol and glucose by a co-culture system of engineered Escherichia coli strains for 1,3-propanediol production without vitamin B12 supplementation.

    Bioresour. Technol. 2021; 319124218

    • Lee J.H.
    • et al.

    Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21(DE3).

    Biotechnol. Bioprocess Eng. 2018; 23: 250-258

    • de Santana J.S.
    • et al.

    Production of 1,3-propanediol by Lactobacillus diolivorans from agro-industrial residues and cactus cladode acid hydrolyzate.

    Appl. Biochem. Biotechnol. 2021; 193: 1585-1601

    • Fokum E.
    • et al.

    Co-fermentation of glycerol and sugars by Clostridium beijerinckii: enhancing the biosynthesis of 1,3-propanediol.

    Food Biosci. 2021; 41101028

    • Bao W.
    • et al.

    Regulation of pyruvate formate lyase-deficient Klebsiella pneumoniae for efficient 1,3-propanediol bioproduction.

    Curr. Microbiol. 2020; 77: 55-61

    • Cui Z.
    • et al.

    Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH.

    Metab. Eng. 2017; 42: 126-133

    • Ahn J.H.
    • et al.

    Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase.

    Nat. Commun. 2020; 11: 1970

    • Ferone M.
    • et al.

    Continuous succinic acid fermentation by actinobacillus succinogenes: assessment of growth and succinic acid production kinetics.

    Appl. Biochem. Biotechnol. 2019; 187: 782-799

    • Liu Y.
    • et al.

    Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene.

    Biotechnol. Biofuels. 2019; 12: 296

    • Liu H.
    • et al.

    Dual regulation of cytoplasm and peroxisomes for improved Α-farnesene production in recombinant Pichia pastoris.

    ACS Synth. Biol. 2021; 10: 1563-1573

    • Chae T.U.
    • et al.

    Metabolic engineering for the production of dicarboxylic acids and diamines.

    Metab. Eng. 2020; 58: 2-16

    • Wu L.
    • et al.

    A hybrid biological-chemical approach offers flexibility and reduces the carbon footprint of bio-based plastics, rubbers, and fuels.

    ACS Sustain. Chem. Eng. 2018; 6: 14523-14532

    • Wurm F.R.
    • et al.

    Plastics and the environment-current status and challenges in Germany and Australia.

    Macromol. Rapid Commun. 2020; 41e2000351

    • Bandini F.
    • et al.

    Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste.

    J. Polym. Environ. 2020; 28: 2539-2550

    • Liu Z.
    • et al.

    Monitoring global carbon emissions in 2021.

    Nat. Rev. Earth Environ. 2022; 3: 217-219

    • Meys R.
    • et al.

    Achieving net-zero greenhouse gas emission plastics by a circular carbon economy.

    Science. 2021; 374: 71-76

    • Vethaak A.D.
    • Legler J.

    Microplastics and human health.

    Science. 2021; 371: 672-674

  • Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019.

    U.S. Environmental Protection Agency,
    2021

    • Churkina G.
    • et al.

    Buildings as a global carbon sink.

    Nat. Sustain. 2020; 3: 269-276

  • spot_img

    Latest Intelligence

    spot_img