Zephyrnet Logo

Prime editing: advances and therapeutic applications

Date:

    • Adli M.

    The CRISPR tool kit for genome editing and beyond.

    Nat. Commun. 2018; 9: 1911

    • Moon S.B.
    • et al.

    Recent advances in the CRISPR genome editing tool set.

    Exp. Mol. Med. 2019; 51: 1-11

    • Hsu P.D.
    • et al.

    Development and applications of CRISPR–Cas9 for genome engineering.

    Cell. 2014; 157: 1262-1278

    • Jinek M.
    • et al.

    A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

    Science. 2012; 337: 816-821

    • Cong L.
    • et al.

    Multiplex genome engineering using CRISPR/Cas systems.

    Science. 2013; 339: 819-823

    • Liang F.
    • et al.

    Homology-directed repair is a major double-strand break repair pathway in mammalian cells.

    Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 5172-5177

    • Jeggo P.

    DNA breakage and repair.

    Adv. Genet. 1998; 38: 185-218

    • Ceccaldi R.
    • et al.

    Repair pathway choices and consequences at the double-strand break.

    Trends Cell Biol. 2016; 26: 52-64

    • Lieber M.R.

    The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway.

    Annu. Rev. Biochem. 2010; 79: 181-211

    • Chiruvella K.K.
    • et al.

    Repair of double-strand breaks by end joining.

    Cold Spring Harb. Perspect. Biol. 2013; 5a012757

    • Heyer W.-D.
    • et al.

    Regulation of homologous recombination in eukaryotes.

    Annu. Rev. Genet. 2010; 44: 113-139

    • Yeh C.D.
    • et al.

    Advances in genome editing through control of DNA repair pathways.

    Nat. Cell Biol. 2019; 21: 1468-1478

    • Lin S.
    • et al.

    Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.

    eLife. 2014; 3e04766

    • Mali P.
    • et al.

    RNA-guided human genome engineering via Cas9.

    Science. 2013; 339: 823-826

    • Kosicki M.
    • et al.

    Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements.

    Nat. Biotechnol. 2018; 36: 765-771

    • Mani R.S.
    • Chinnaiyan A.M.

    Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences.

    Nat. Rev. Genet. 2010; 11: 819-829

    • Ihry R.J.
    • et al.

    p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells.

    Nat. Med. 2018; 24: 939-946

    • Enache O.M.
    • et al.

    Cas9 activates the p53 pathway and selects for p53-inactivating mutations.

    Nat. Genet. 2020; 52: 662-668

    • Haapaniemi E.
    • et al.

    CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response.

    Nat. Med. 2018; 24: 927-930

    • Nishimasu H.
    • et al.

    Crystal structure of Cas9 in complex with guide RNA and target DNA.

    Cell. 2014; 156: 935-949

    • Davis L.
    • Maizels N.

    Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair.

    Proc. Natl. Acad. Sci. U. S. A. 2014; 111: E924-E932

    • Porto E.M.
    • et al.

    Base editing: advances and therapeutic opportunities.

    Nat. Rev. Drug Discov. 2020; 19: 839-859

    • Anzalone A.V.
    • et al.

    Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors.

    Nat. Biotechnol. 2020; 38: 824-844

    • Komor A.C.
    • et al.

    Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    Nature. 2016; 533: 420-424

    • Gaudelli N.M.
    • et al.

    Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage.

    Nature. 2017; 551: 464-471

    • Gehrke J.M.
    • et al.

    An APOBEC3A–Cas9 base editor with minimized bystander and off-target activities.

    Nat. Biotechnol. 2018; 36: 977-982

    • Anzalone A.V.
    • et al.

    Search-and-replace genome editing without double-strand breaks or donor DNA.

    Nature. 2019; 576: 149-157

    • Park S.J.
    • et al.

    Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor.

    Genome Biol. 2021; 22: 170

    • Liu Y.
    • et al.

    Efficient generation of mouse models with the prime editing system.

    Cell Discov. 2020; 6: 27

    • Lin J.
    • et al.

    Modeling a cataract disorder in mice with prime editing.

    Mol. Ther. Nucleic Acids. 2021; 25: 494-501

    • Gao P.
    • et al.

    Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression.

    Genome Biol. 2021; 22: 83

    • Schene I.F.
    • et al.

    Prime editing for functional repair in patient-derived disease models.

    Nat. Commun. 2020; 11: 5352

    • Geurts M.H.
    • et al.

    Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids.

    Life Sci. Alliance. 2021; 4e202000940

    • Jin S.
    • et al.

    Genome-wide specificity of prime editors in plants.

    Nat. Biotechnol. 2021; 39: 1292-1299

    • Petri K.
    • et al.

    CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells.

    Nat. Biotechnol. 2022; 40: 189-193

    • Doman J.L.
    • et al.

    Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors.

    Nat. Biotechnol. 2020; 38: 620-628

    • Grünewald J.
    • et al.

    Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

    Nature. 2019; 569: 433-437

    • Fan J.
    • et al.

    Cytosine and adenine deaminase base-editors induce broad and nonspecific changes in gene expression and splicing.

    Commun. Biol. 2021; 4: 882

    • Bosch J.A.
    • et al.

    Precise genome engineering in Drosophila using prime editing.

    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2021996118

    • Kim D.Y.
    • et al.

    Unbiased investigation of specificities of prime editing systems in human cells.

    Nucleic Acids Res. 2020; 48: 10576-10589

    • Habib O.
    • et al.

    Comprehensive analysis of prime editing outcomes in human embryonic stem cells.

    Nucleic Acids Res. 2022; 50: 1187-1197

    • Adikusuma F.
    • et al.

    Optimized nickase- and nuclease-based prime editing in human and mouse cells.

    Nucleic Acids Res. 2021; 49: 10785-10795

    • Surun D.
    • et al.

    Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors.

    Genes (Basel). 2020; 11: 511

    • Song M.
    • et al.

    Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain.

    Nat. Commun. 2021; 12: 5617

    • Zheng C.
    • et al.

    A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver.

    Mol. Ther. 2022; 30: 1343-1351

    • Aida T.
    • et al.

    Prime editing primarily induces undesired outcomes in mice.

    bioRxiv. 2020; (Published online August 6, 2020)

    • Böck D.
    • et al.

    In vivo prime editing of a metabolic liver disease in mice.

    Sci. Transl. Med. 2022; 14: eabl9238

    • Liu P.
    • et al.

    Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice.

    Nat. Commun. 2021; 12: 2121

    • Wang L.
    • et al.

    Spelling changes and fluorescent tagging with prime editing vectors for plants.

    Front. Genome Ed. 2021; 3617553

    • Lin Q.
    • et al.

    Prime genome editing in rice and wheat.

    Nat. Biotechnol. 2020; 38: 582-585

    • Jiang Y.Y.
    • et al.

    Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize.

    Genome Biol. 2020; 21: 257

    • Lu Y.
    • et al.

    Precise genome modification in tomato using an improved prime editing system.

    Plant Biotechnol. J. 2021; 19: 415-417

    • Lin Q.
    • et al.

    High-efficiency prime editing with optimized, paired pegRNAs in plants.

    Nat. Biotechnol. 2021; 39: 923-927

    • Kim H.K.
    • et al.

    Predicting the efficiency of prime editing guide RNAs in human cells.

    Nat. Biotechnol. 2021; 39: 198-206

    • Arezi B.
    • Hogrefe H.

    Novel mutations in Moloney murine leukemia virus reverse transcriptase increase thermostability through tighter binding to template-primer.

    Nucleic Acids Res. 2009; 37: 473-481

    • Chen P.J.
    • et al.

    Enhanced prime editing systems by manipulating cellular determinants of editing outcomes.

    Cell. 2021; 184: 5635-5652

    • Velimirovic M.
    • et al.

    Peptide fusion improves prime editing efficiency.

    Nat. Commun. 2022; 13: 3512

    • Zong Y.
    • et al.

    An engineered prime editor with enhanced editing efficiency in plants.

    Nat. Biotechnol. 2022; 40: 1394-1402

    • Chow R.D.
    • et al.

    A web tool for the design of prime-editing guide RNAs.

    Nat. Biomed. Eng. 2021; 5: 190-194

    • Hsu J.Y.
    • et al.

    PrimeDesign software for rapid and simplified design of prime editing guide RNAs.

    Nat. Commun. 2021; 12: 1034

    • Hwang G.H.
    • et al.

    PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing.

    Nucleic Acids Res. 2021; 49: W499-W504

    • Siegner S.M.
    • et al.

    PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants.

    BMC Bioinformatics. 2021; 22: 101

    • Anderson M.V.
    • et al.

    pegIT – a web-based design tool for prime editing.

    Nucleic Acids Res. 2021; 49: W505-W509

    • Liu Y.
    • et al.

    Enhancing prime editing by Csy4-mediated processing of pegRNA.

    Cell Res. 2021; 31: 1134-1136

    • Li X.
    • et al.

    Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure.

    Nat. Commun. 2022; 13: 1669

    • Zhang G.
    • et al.

    Enhancement of prime editing via xrRNA motif-joined pegRNA.

    Nat. Commun. 2022; 13: 1856

    • Nelson J.W.
    • et al.

    Engineered pegRNAs improve prime editing efficiency.

    Nat. Biotechnol. 2022; 40: 402-410

    • Choi J.
    • et al.

    Precise genomic deletions using paired prime editing.

    Nat. Biotechnol. 2022; 40: 218-226

    • Anzalone A.V.
    • et al.

    Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.

    Nat. Biotechnol. 2022; 40: 731-740

    • Jiang T.
    • et al.

    Deletion and replacement of long genomic sequences using prime editing.

    Nat. Biotechnol. 2022; 40: 227-234

    • Tao R.
    • et al.

    Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.

    Nucleic Acids Res. 2022; 50: 6423-6434

    • Wang J.
    • et al.

    Efficient targeted insertion of large DNA fragments without DNA donors.

    Nat. Methods. 2022; 19: 331-340

    • Ferreira da Silva J.
    • et al.

    Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair.

    Nat. Commun. 2022; 13: 760

    • Kleinstiver B.P.
    • et al.

    Engineered CRISPR–Cas9 nucleases with altered PAM specificities.

    Nature. 2015; 523: 481-485

    • Hu J.H.
    • et al.

    Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.

    Nature. 2018; 556: 57-63

    • Nishimasu H.
    • et al.

    Engineered CRISPR–Cas9 nuclease with expanded targeting space.

    Science. 2018; 361: 1259-1262

    • Kweon J.
    • et al.

    Engineered prime editors with PAM flexibility.

    Mol. Ther. 2021; 29: 2001-2007

    • Wu Z.
    • et al.

    Adeno-associated virus serotypes: vector toolkit for human gene therapy.

    Mol. Ther. 2006; 14: 316-327

    • Zhi S.
    • et al.

    Dual-AAV delivering split prime editor system for in vivo genome editing.

    Mol. Ther. 2022; 30: 283-294

    • Liu B.
    • et al.

    A split prime editor with untethered reverse transcriptase and circular RNA template.

    Nat. Biotechnol. 2022; 40: 1388-1393

    • Doudna J.A.

    The promise and challenge of therapeutic genome editing.

    Nature. 2020; 578: 229-236

    • Chemello F.
    • et al.

    Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing.

    Sci. Adv. 2021; 7: eabg4910

    • Jang H.
    • et al.

    Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases.

    Nat. Biomed. Eng. 2022; 6: 181-194

    • Shedlovsky A.
    • et al.

    Mouse models of human phenylketonuria.

    Genetics. 1993; 134: 1205-1210

    • Aulicino F.
    • et al.

    Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus.

    Nucleic Acids Res. 2022; 50: 7783-7799

    • Li H.
    • et al.

    Multiplex precision gene editing by a surrogate prime editor in rice.

    Mol. Plant. 2022; 15: 1077-1080

    • Torkamani A.
    • et al.

    The personal and clinical utility of polygenic risk scores.

    Nat. Rev. Genet. 2018; 19: 581-590

    • Wrona D.
    • et al.

    CRISPR-directed therapeutic correction at the NCF1 locus is challenged by frequent incidence of chromosomal deletions.

    Mol. Ther. Methods Clin. Dev. 2020; 17: 936-943

    • Asmamaw Mengstie M.

    Viral vectors for the in vivo delivery of CRISPR components: advances and challenges.

    Front. Bioeng. Biotechnol. 2022; 10895713

    • Taha E.A.
    • et al.

    Delivery of CRISPR–Cas tools for in vivo genome editing therapy: trends and challenges.

    J. Control. Release. 2022; 342: 345-361

    • Kazemian P.
    • et al.

    Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components.

    Mol. Pharm. 2022; 19: 1669-1686

    • D’Astolfo D.S.
    • et al.

    Efficient intracellular delivery of native proteins.

    Cell. 2015; 161: 674-690

    • Staahl B.T.
    • et al.

    Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.

    Nat. Biotechnol. 2017; 35: 431-434

    • Raguram A.
    • et al.

    Therapeutic in vivo delivery of gene editing agents.

    Cell. 2022; 185: 2806-2827

    • Lino C.A.
    • et al.

    Delivering CRISPR: a review of the challenges and approaches.

    Drug Delivery. 2018; 25: 1234-1257

    • Verdera H.C.
    • et al.

    AAV vector immunogenicity in humans: a long journey to successful gene transfer.

    Mol. Ther. 2020; 28: 723-746

    • Asmamaw M.
    • Zawdie B.

    Mechanism and applications of CRISPR/Cas-9-mediated genome editing.

    Biologics: Targets Ther. 2021; 15: 353

    • Chen S.
    • et al.

    Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes.

    J. Biol. Chem. 2016; 291: 14457-14467

    • Yin H.
    • et al.

    Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.

    Nat. Biotechnol. 2016; 34: 328-333

    • Zuris J.A.
    • et al.

    Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo.

    Nat. Biotechnol. 2015; 33: 73-80

    • Ramakrishna S.
    • et al.

    Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA.

    Genome Res. 2014; 24: 1020-1027

    • Gori J.L.
    • et al.

    Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy.

    Hum. Gene Ther. 2015; 26: 443-451

    • Yang H.
    • et al.

    One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.

    Cell. 2013; 154: 1370-1379

    • Lyu P.
    • et al.

    Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing.

    Life. 2020; 10: 366

    • Larrea A.A.
    • et al.

    SnapShot: DNA mismatch repair.

    Cell. 2010; 141: 730-731

    • Iyer R.R.
    • et al.

    DNA mismatch repair: functions and mechanisms.

    Chem. Rev. 2006; 106: 302-323

    • Kunkel T.A.
    • Erie D.A.

    DNA mismatch repair.

    Annu. Rev. Biochem. 2005; 74: 681-710

    • Li G.-M.

    Mechanisms and functions of DNA mismatch repair.

    Cell Res. 2008; 18: 85-98

    • Gupta S.
    • et al.

    Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops.

    Nat. Struct. Mol. Biol. 2012; 19: 72-78

    • Warren J.J.
    • et al.

    Structure of the human MutSα DNA lesion recognition complex.

    Mol. Cell. 2007; 26: 579-592

    • Kadyrov F.A.
    • et al.

    Endonucleolytic function of MutLα in human mismatch repair.

    Cell. 2006; 126: 297-308

    • Pluciennik A.
    • et al.

    PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 16066-16071

    • Genschel J.
    • et al.

    Human exonuclease I is required for 5′ and 3′ mismatch repair.

    J. Biol. Chem. 2002; 277: 13302-13311

    • Zhang Y.
    • et al.

    Reconstitution of 5′-directed human mismatch repair in a purified system.

    Cell. 2005; 122: 693-705

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?