Connect with us

Nano Technology

Oxford Instruments Plasma Technology Releases PTIQ: Intelligent Control Software for Plasma and Ion beam Processing Equipment

Avatar

Published

on

Home > Press > Oxford Instruments Plasma Technology Releases PTIQ: Intelligent Control Software for Plasma and Ion beam Processing Equipment

Abstract:
Oxford Instruments Plasma Technology, a leading provider of plasma and ion beam processing equipment has today launched PTIQ, a new range of control software for their leading-edge plasma processing systems.

Oxford Instruments Plasma Technology Releases PTIQ: Intelligent Control Software for Plasma and Ion beam Processing Equipment


Abingdon, UK | Posted on July 9th, 2020

Frazer Anderson, Innovation and Solutions Director, Plasma Technology, comments: “The PTIQ software has been designed to deliver an exceptional level of responsive system control, reliability and repeatability for our customers. It will optimise their process performance whether that be in the Lab or Fab. We recognise our R&D and high-volume manufacturing (HVM) customers have distinct requirements, and PTIQ caters for that with different levels of software.”

Frazer continues: “PTIQ is SEMI E95 compliant to facilitate rapid, error free process setup and provides automated daily, weekly and monthly checks to optimise uptime which is paramount for our HVM customers. It also assists enhanced yield through fingerprinting and chamber matching and features a flexible batch scheduler allowing throughput optimisation. It is customisable for error free, multiuser operation in any cleanroom environment which we know will be of great benefit to our customers at research facilities. We have also included a recipe editor that matches Oxford Instruments process datasheets for easy, error free transfer of recipes.

The revolutionary software is now available on new system purchases, and as an upgrade for existing customers with PlasmaPro® or Plasmalab® systems.

Dean Furlong, Customer Service Director, Plasma Technology states: “Our systems have a long lifetime, and we want our existing customers to benefit from this new software to optimise operational and process performance with their existing equipment. The upgrade options are available immediately for PlasmaPro and Plasmalab systems, including the ability to transfer recipes.”

####

About Oxford Instruments Plasma Technology
Oxford Instruments Plasma Technology offers flexible, configurable process tools and leading-edge processes for the precise, controllable and repeatable engineering of micro- and nano-structures. Our systems provide process solutions for the etching of nanometre sized features, nanolayer deposition and the controlled growth of nanostructures.

These solutions are based on core technologies in plasma-enhanced deposition and etch, ion-beam deposition and etch, atomic layer deposition, deep silicon etch and physical vapour deposition. Products range from compact stand-alone systems for R&D, through batch tools and up to clustered cassette-to-cassette platforms for high-throughput production processing.

About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments’ growth and success for 60 years, supporting its core purpose to address some of the world’s most pressing challenges.

The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company and is listed on the FTSE250 index of the London Stock Exchange (OXIG). Its strategy focuses on being a customer-centric, market-focused Group, understanding the technical and commercial challenges faced by its customers. Key market segments include Semiconductor & Communications, Advanced Materials, Healthcare & Life Science, and Quantum Technology.

Their portfolio includes a range of core technologies in areas such as low temperature and high magnetic field environments; Nuclear Magnetic Resonance; X-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; and advanced growth, deposition and etching.

Oxford Instruments is helping enable a greener economy, increased connectivity, improved health and leaps in scientific understanding. Their advanced products and services allow the world’s leading industrial companies and scientific research communities to image, analyse and manipulate materials down to the atomic and molecular level, helping to accelerate R&D, increase manufacturing productivity and make ground-breaking discoveries.

For more information, please click here

Contacts:
Claire Critchell, Marketing Communications Manager

Oxford Instruments Plasma Technology

E: | T: +44 (0)1934 837053

Copyright © Oxford Instruments Plasma Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Possible Futures

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Announcements

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Rock ‘n’ control: Göttingen physicists use oscillations of atoms to control a phase transition July 8th, 2020

Science fiction becomes fact — Teleportation helps to create live musical performance July 7th, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Tools

Old X-rays, new vision: A nano-focused X-ray laser: Researchers enhance the accuracy of X-ray free-electron laser measurements closer to the diameter of typical atoms than previously possible July 8th, 2020

Developing new techniques to improve atomic force microscopy June 26th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56243

Nano Technology

Scientists discover new class of semiconducting entropy-stabilized materials

Avatar

Published

on

Home > Press > Scientists discover new class of semiconducting entropy-stabilized materials

Crystal structure of GeSnPbSSeTe, a semiconducting entropy-stabilized chalcogenide alloy. The yellow atoms are cations (Ge, Sn, Pb) and the blue atoms are anions (S, Se, Te). The difference in lightness corresponds to different species of the anions and cations. The configurational entropy from the disorder of both the anion and the cation sublattices stabilizes the single-phase rocksalt solid solution, as demonstrated from first-principles calculations as well as experimental synthesis and characterization. CREDIT
Logan Williams, Emmanouil Kioupakis, and Zihao Deng, Dept. of Materials Science & Engineering, University of Michigan
Crystal structure of GeSnPbSSeTe, a semiconducting entropy-stabilized chalcogenide alloy. The yellow atoms are cations (Ge, Sn, Pb) and the blue atoms are anions (S, Se, Te). The difference in lightness corresponds to different species of the anions and cations. The configurational entropy from the disorder of both the anion and the cation sublattices stabilizes the single-phase rocksalt solid solution, as demonstrated from first-principles calculations as well as experimental synthesis and characterization. CREDIT
Logan Williams, Emmanouil Kioupakis, and Zihao Deng, Dept. of Materials Science & Engineering, University of Michigan

Abstract:
Semiconductors are important materials in numerous functional applications such as digital and analog electronics, solar cells, LEDs, and lasers. Semiconducting alloys are particularly useful for these applications since their properties can be engineered by tuning the mixing ratio or the alloy ingredients. However, the synthesis of multicomponent semiconductor alloys has been a big challenge due to thermodynamic phase segregation of the alloy into separate phases. Recently, University of Michigan researchers Emmanouil (Manos) Kioupakis and Pierre F. P. Poudeu, both in the Materials Science and Engineering Department, utilized entropy to stabilize a new class of semiconducting materials, based on GeSnPbSSeTe high-entropy chalcogenide alloys,[1] a discovery that paves the way for wider adoption of entropy-stabilized semiconductors in functional applications. Their article, “Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping” was recently published in the journal Chemistry of Materials.

Scientists discover new class of semiconducting entropy-stabilized materials


Ann Arbor, MI | Posted on July 31st, 2020

Entropy, a thermodynamic quantity that quantifies the degree of disorder in a material, has been exploited to synthesize a vast array of novel materials by mixing eachcomponent in an equimolar fashion, from high-entropy metallic alloys to entropy-stabilized ceramics. Despite having a large enthalpy of mixing, these materials can surprisingly crystalize in a single crystal structure, enabled by the large configurational entropy in the lattice. Kioupakis and Poudeu hypothesized that this principle of entropy stabilization can be applied to overcome the synthesis challenges of semiconducting alloys that prefer to segregation into thermodynamically more stable compounds. They tested their hypothesis on a 6-component II-VI chalcogenide alloy derived from the PbTe structure by mixing Ge, Sn, and Pb on the cation site, and S, Se, and Te on the anion site.

Using high throughput first-principles calculations, Kioupakis uncovered the complex interplay between the enthalpy and entropy in GeSnPbSSeTe high-entropy chalcogenide alloys. He found that the large configurational entropy from both anion and cation sublattices stabilizes the alloys into single-phase rocksalt solid solutions at the growth temperature. Despite being metastable at room temperature, these solid solutions can be preserved by fast cooling under ambient conditions. Poudeu later verified the theory predictions by synthesizing the e

quimolar composition (Ge1/3Sn1/3Pb1/3S1/3Se1/3Te1/3) by a two-step solid-state reaction followed by fast quenching in liquid nitrogen. The synthesized power showed well-defined XRD patterns corresponding to a pure rocksalt structure. Furthermore, they observed reversible phase transition between single-phase solid solution and multiple-phase segregation from DSC analysis and temperature dependent XRD, which is a key feature of entropy stabilization.

What makes high-entropy chalcogenide intriguing is their functional properties. Previously discovered high-entropy materials are either conducting metals or insulating ceramics, with a clear dearth in the semiconducting regime. Kioupakis and Poudeu found that. the equimolar GeSnPbSSeTe is an ambipolarly dopable semiconductor, with evidence from a calculated band gap of 0.86 eV and sign reversal of the measured Seebeck coefficient upon p-type doping with Na acceptors and n-type doping with Bi donors. The alloy also exhibits an ultralow thermal conductivity that is nearly independent of temperature. These fascinating functional properties make GeSnPbSSeTe a promising new material to be deployed in electronic, optoelectronic, photovoltaic, and thermoelectric devices.

Entropy stabilization is a general and powerful method to realize a vast array of materials compositions. The discovery of entropy stabilization in semiconducting chalcogenide alloys by the team at UM is only the tip of the iceberg that can pave the way for novel functional applications of entropy-stabilized materials.

###

This study was supported by the National Science Foundation through Grant No. DMR-1561008 (first-principles calculations, synthesis, and characterization) and the Department of Energy, Office of Basic Energy Sciences under Award # DE-SC-00018941 (electronic and thermal transport measurements). The DFT calculations used resources of the National Energy Research Scientific Computing (NERSC) Center, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231.Related conference presentation:

Zihao Deng, Alan Olvera, Joseph Casamento, Juan Lopez, Logan Williams, Ruiming Lu, Guangsha Shi, Pierre F. P. Poudeu, and Emmanouil Kioupakis. Computational prediction and experimental discovery of semiconducting high-entropy chalcogenide alloys, MRS Fall Meeting 2019, EL04.01.05

####

For more information, please click here

Contacts:
Emmanouil (Manos) Kioupakis
734-945-4456

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the related publication:

Related News Press

News and information

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Display technology/LEDs/SS Lighting/OLEDs

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Pushing Photons: Metasurface design methods can make LED light act more like lasers June 3rd, 2020

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Govt.-Legislation/Regulation/Funding/Policy

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

Possible Futures

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Chip Technology

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Announcements

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Photonics/Optics/Lasers

Brazilian researchers develop an optical fiber made of gel derived from marine algae: Edible, biocompatible and biodegradable, these fibers have potential for various medical applications. The results are described in the journal Scientific Reports. July 24th, 2020

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56276

Continue Reading

Nano Technology

TU Graz researchers synthesize nanoparticles tailored for special applications

Avatar

Published

on

Home > Press > TU Graz researchers synthesize nanoparticles tailored for special applications

The graph illustrates the stepwise synthesis of Silver-Zinc Oxide core-shell clusters. CREDIT
© IEP - TU Graz
The graph illustrates the stepwise synthesis of Silver-Zinc Oxide core-shell clusters. CREDIT
© IEP – TU Graz

Abstract:
Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest portions of bulk material – form the basis for a whole range of new technological developments. Due to the laws of quantum mechanics, such particles measuring only a few millionths of a millimetre can behave completely differently in terms of conductivity, optics or robustness than the same material on a macroscopic scale. In addition, nanoparticles or nanoclusters have a very large catalytically effective surface area compared to their volume. For many applications this allows material savings while maintaining the same performance.

TU Graz researchers synthesize nanoparticles tailored for special applications


Graz, Austria | Posted on July 31st, 2020

Further development of top-level research in Graz in the field of nanomaterials

Researchers at the Institute of Experimental Physics (IEP) at Graz University of Technology have developed a method for assembling nanomaterials as desired. They let superfluid helium droplets of an internal temperature of 0.4 Kelvin (i.e. minus 273 degrees Celsius) fly through a vacuum chamber and selectively introduce individual atoms or molecules into these droplets. “There, they coalesce into a new aggregate and can be deposited on different substrates,” explains experimental physicist Wolfgang Ernst from TU Graz. He has been working on this so-called helium-droplet synthesis for twenty-five years now, has successively developed it further during this time, and has produced continuous research at the highest international level, mostly performed in “Cluster Lab 3”, which has been set up specifically for this purpose at the IEP.

Reinforcement of catalytic properties

In Nano Research, Ernst and his team now report on the targeted formation of so-called core-shell clusters using helium-droplet synthesis. The clusters have a 3-nanometer core of silver and a 1.5-nanometer-thick shell of zinc oxide. Zinc oxide is a semiconductor that is used, for example, in radiation detectors for measuring electromagnetic radiation or in photocatalysts for breaking down organic pollutants. The special thing about the material combination is that the silver core provides a plasmonic resonance, i.e. it absorbs light and thus causes a high light field amplification. This puts electrons in an excited state in the surrounding zinc oxide, thereby forming electron-hole pairs – small portions of energy that can be used elsewhere for chemical reactions, such as catalysis processes directly on the cluster surface. “The combination of the two material properties increases the efficiency of photocatalysts immensely. In addition, it would be conceivable to use such a material in water splitting for hydrogen production,” says Ernst, naming a field of application.

Nanoparticles for laser and magnetic sensors

In addition to the silver-zinc oxide combination, the researchers produced other interesting core-shell clusters with a magnetic core of the elements iron, cobalt or nickel and a shell of gold. Gold also has a plasmonic effect and also protects the magnetic core from unwanted oxidation. These nanoclusters can be influenced and controlled both by lasers and by external magnetic fields and are suitable for sensor technologies, for example. For these material combinations, temperature-dependent stability measurements as well as theoretical calculations were carried out in collaboration with the IEP theory group led by Andreas Hauser and the team of Maria Pilar de Lara Castells (Institute of Fundamental Physics at the Spanish National Research Council CSIC, Madrid) and can explain the behaviour at phase transitions such as alloy formation that deviates from macroscopic material samples. The results were published in the Journal of Physical Chemistry.

Ernst now hopes that the findings from the experiments will be rapidly transferred into new catalysts “as soon as possible”.

###

This research area is anchored in the Field of Expertise “Advanced Materials Science”, one of five strategic foci of TU Graz. The Cluster 3 laboratory was set up using funds from the European Regional Development Fund (ERDF) with the support of the European Union and the State of Styria. The measurements for photoelectron spectroscopy of the particles could be carried out with the aid of a photoemission electron microscope in the framework of the structural funds of the higher education area of the Austrian Federal Government. The work was also supported by three projects of the Austrian Research Fund FWF.

####

For more information, please click here

Contacts:
Wolfgang ERNST
Em.Univ.-Prof. Dipl.-Phys. Dr.rer.nat.
Tel.: +43 316 873 8140; E-Mail:

Florian LACKNER
Univ.Ass. Dipl.-Ing. Dr.techn.
Tel.: +43 316 873 8647; E-Mail:

Andreas HAUSER
Assoc.Prof. Mag. phil. Dipl.-Ing. Dr. phil Dr. techn.
Tel.: +43 316 873 8157; E-Mail:

At Institute of Fundamental Physics at the Spanish National Research Council CSIC, Madrid:
Maria Pilar de Lara Castells
E-Mail:

Copyright © Graz University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To the original publications:

Related News Press

News and information

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Possible Futures

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Chip Technology

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Discoveries

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Materials/Metamaterials

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys’ strength-ductility trade-off and thermal instability July 24th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Announcements

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Energy

‘Blinking” crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the’wonder material’ graphene, it has to be combined with other materials July 10th, 2020

Biosynthetic sustainable hierarchical solar steam generator July 10th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56277

Continue Reading

Nano Technology

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home

Avatar

Published

on

Home > Press > New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home

This tensile object was created using 3D injection printing, a new technology invented by UMass Lowell Plastics Engineering Prof. David Kazmer. CREDIT
David Kazmer
This tensile object was created using 3D injection printing, a new technology invented by UMass Lowell Plastics Engineering Prof. David Kazmer. CREDIT
David Kazmer

Abstract:
More durable prosthetics and medical devices for patients and stronger parts for airplanes and automobiles are just some of the products that could be created through a new 3D printing technology invented by a UMass Lowell researcher.

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home


Lowell, MA | Posted on July 31st, 2020

Substances such as plastics, metals and wax are used in 3D printers to make products and parts for larger items, as the practice has disrupted the prototyping and manufacturing fields. Products created through the 3D printing of plastics include everything from toys to drones. While the global market for 3D plastics printers is estimated at $4 billion and growing, challenges remain in ensuring the printers create objects that are produced quickly, retain their strength and accurately reflect the shape desired, according to UMass Lowell’s David Kazmer, a plastics engineering professor who led the research project.

Called injection printing, the technology Kazmer pioneered is featured in the academic journal Additive Manufacturing posted online last week.

The invention combines elements of 3D printing and injection molding, a technique through which objects are created by filling mold cavities with molten materials. The marriage of the two processes increases the production rate of 3D printing, while enhancing the strength and properties of the resulting products. The innovation typically produces objects about three times faster than conventional 3D printing, which means jobs that once took about nine hours now only take three, according to Kazmer, who lives in Georgetown.

“The invention greatly improves the quality of the parts produced, making them fully dense with few cracks or voids, so they are much stronger. For technical applications, this is game-changing. The new process is also cost-effective because it can be used in existing 3D printers, with only new software to program the machine needed,” Kazmer said.

The process took about 18 months to develop. Austin Colon of Plymouth, a UMass Lowell Ph.D. candidate in plastics engineering, helped validate the technology alongside Kazmer, who teaches courses in product design, prototyping and process control, among other topics. He has filed for a patent on the new technology.

####

About University of Massachusetts Lowell
UMass Lowell is a national research university located on a high-energy campus in the heart of a global community. The university offers its more than 18,000 students bachelor’s, master’s and doctoral degrees in business, education, engineering, fine arts, health, humanities, sciences and social sciences. UMass Lowell delivers high-quality educational programs, vigorous hands-on learning and personal attention from leading faculty and staff, all of which prepare graduates to be leaders in their communities and around the globe.

For more information, please click here

Contacts:
Nancy Cicco
978-934-4944

@UMassLowell

Copyright © University of Massachusetts Lowell

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

3D & 4D printing/Additive-manufacturing

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Researchers mimic nature for fast, colorful 3D printing June 10th, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more May 1st, 2020

Possible Futures

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Discoveries

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Announcements

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Researchers mimic nature for fast, colorful 3D printing June 10th, 2020

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Source: http://www.nanotech-now.com/news.cgi?story_id=56278

Continue Reading
Semiconductor5 hours ago

Rethinking Competitive One Upmanship Among Foundries

Semiconductor5 hours ago

The Evolution Of Digital Twins

Start Ups5 hours ago

Startup News India, Startup Stories India – timesnext.com

Cleantech6 hours ago

In Defense Of PHEVs (Probably Part One)

Payments6 hours ago

Ethereum is Going to the Moon

AI6 hours ago

Disney Joins Global Facebook Boycott

Cleantech7 hours ago

Our First Trade Show — A Wrapup

Networks7 hours ago

AWS adds database on-ramp to its Arm-powered instances

Cleantech7 hours ago

Just How Much Does Tesla Get In Subsidies Anyways?

Cleantech8 hours ago

OPEC Struggles To Manage “Permanent Demand Destruction”

Cleantech9 hours ago

NextEra Energy Sees Hydrogen As A Zero Emissions Alternative To Natural Gas

Blockchain11 hours ago

Ethereum DeFi’s Ampleforth (AMPL) Drops 20% Despite “Whale” Accumulation

Blockchain16 hours ago

Ethereum’s Compound (COMP) Slides to Multi-Month Low Despite DeFi Explosion

Blockchain17 hours ago

Why Analysts Expect Ethereum to See Further Downside Following Intense Selloff

Blockchain20 hours ago

$500M Liquidated: Bitcoin Slides to Crucial Level Following Overnight Volatility

Cannabis21 hours ago

Shelf-life stability: Here’s what cannabis-infused product makers need to know

AR/VR22 hours ago

The VR Job Hub: Draw & Code, Polyarc Games & FitXR

Blockchain22 hours ago

Ampleforth: A Guide to the AMPL DeFi Protocol

Blockchain1 day ago

What Are Analysts Saying After Ethereum Crashed 26% in Under Ten Minutes?

Blockchain2 days ago

Ethereum is Gearing Up for a Move Past $400; Here’s What Will Drive It Higher

Blockchain2 days ago

Ethereum Rockets to $380 to Post 10% One-Day Surge: What’s Next For ETH?

Nano Technology2 days ago

Scientists discover new class of semiconducting entropy-stabilized materials

Nano Technology2 days ago

TU Graz researchers synthesize nanoparticles tailored for special applications

Nano Technology2 days ago

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home

Nano Technology2 days ago

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide

Nano Technology2 days ago

Physicists find misaligned carbon sheets yield unparalleled properties

Blockchain2 days ago

Dramatic $17,000 Bitcoin Peak Possible Within Weeks Based on Halving Fracal

Blockchain2 days ago

Why Bitcoin’s 3-Day Candle Close Could Lead to a “Parabolic Advance”

Start Ups2 days ago

Amazon focussing on digitizing MSMEs in India, working on getting more sellers onboard

IOT2 days ago

How close are we to dream-reading technology?

IOT2 days ago

Household Lighting Tools from The Slated Lens #celebratephotography

IOT2 days ago

Perseverance and Ingenuity Assembly, Testing and Launch Preparations #celebratephotography

IOT2 days ago

Making a Zoom Panic Switch with #TrinketM0

IOT2 days ago

How to Make an Attiny85 Console

Cannabis2 days ago

Does Charlie Puth Smoke Weed?

IOT2 days ago

How Many of You Are There, Really?

Financial Express2 days ago

NASA astronauts face final leg of SpaceX test flight: Coming home with a rare splashdown

Financial Express2 days ago

ICEA says mobile firms commit Rs 11,000 cr investment under PLI scheme, to surpass manufacturing estimates by 2 to 2.5 times

Blockchain2 days ago

Bitcoin Reddit Roundup – July 2020

Financial Express2 days ago

Weather Alert: IMD issues yellow alert for 10 districts in Kerala 

Trending