Zephyrnet Logo

Optimization of the surface code design for Majorana-based qubits

Date:


Rui Chao1, Michael E. Beverland2, Nicolas Delfosse2, and Jeongwan Haah2

1University of Southern California, Los Angeles, CA, USA
2Microsoft Quantum and Microsoft Research, Redmond, WA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds. Conventional schemes for error correction with the surface code place qubits on a planar grid and assume native CNOT gates between the data qubits with nearest-neighbor ancilla qubits.

Here, we present surface code error-correction schemes using $textit{only}$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits. In particular, we provide several qubit layouts that offer favorable trade-offs between qubit overhead, circuit depth and connectivity degree. We also develop minimized measurement sequences for syndrome extraction, enabling reduced logical error rates and improved fault-tolerance thresholds.

Our work applies to topologically protected qubits realized with Majorana zero modes and to similar systems in which multi-qubit Pauli measurements rather than CNOT gates are the native operations.

► BibTeX data

► References

[1] A. Y. Kitaev, Ann. Phys. 303, 2 (2003), quant-ph/​9707021.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0
arXiv:quant-ph/9707021

[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002), quant-ph/​0110143.
https:/​/​doi.org/​10.1063/​1.1499754
arXiv:quant-ph/0110143

[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012), 1208.0928.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[4] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007), quant-ph/​0610082.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.190504
arXiv:quant-ph/0610082

[5] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev. A 80, 052312 (2009), 0803.0272.
https:/​/​doi.org/​10.1103/​PhysRevA.80.052312
arXiv:0803.0272

[6] N. Delfosse and G. Zémor, Physical Review Research 2, 033042 (2020), 1703.01517.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033042
arXiv:1703.01517

[7] N. Delfosse and N. H. Nickerson, 2017, 1709.06218.
arXiv:1709.06218

[8] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305 (2017), 1610.05289.
https:/​/​doi.org/​10.1103/​PhysRevB.95.235305
arXiv:1610.05289

[9] C. Knapp, M. Beverland, D. I. Pikulin, and T. Karzig, Quantum 2, 88 (2018), 1806.01275.
https:/​/​doi.org/​10.22331/​q-2018-09-03-88
arXiv:1806.01275

[10] Y. Li, Physical Review Letters 117, 120403 (2016), 1512.05089.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.120403
arXiv:1512.05089

[11] S. Plugge, L. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Phys. Rev. B 94, 174514 (2016), 1606.08408.
https:/​/​doi.org/​10.1103/​PhysRevB.94.174514
arXiv:1606.08408

[12] D. Litinski, M. S. Kesselring, J. Eisert, and F. von Oppen, Phys. Rev. X 7, 031048 (2017), 1704.01589.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031048
arXiv:1704.01589

[13] A. G. Fowler, D. S. Wang, and L. C. L. Hollenberg, Quant. Info. Comput. 11, 8 (2011), 1004.0255.
https:/​/​doi.org/​10.26421/​QIC11.1-2
arXiv:1004.0255

[14] M. Newman, L. A. de Castro, and K. R. Brown, Quantum 4, 295 (2020), 1909.11817.
https:/​/​doi.org/​10.22331/​q-2020-07-13-295
arXiv:1909.11817

[15] A. G. Fowler, 2013, 1310.0863.
arXiv:1310.0863

[16] N. Delfosse and J.-P. Tillich, in 2014 IEEE Int. Symp. Info. (IEEE, 2014) pp. 1071–1075, 1401.6975.
https:/​/​doi.org/​10.1109/​ISIT.2014.6874997
arXiv:1401.6975

[17] S. Huang and K. R. Brown, Phys. Rev. A 101, 042312 (2020), 1911.11317.
https:/​/​doi.org/​10.1103/​PhysRevA.101.042312
arXiv:1911.11317

[18] S. Huang, M. Newman, and K. R. Brown, Phys. Rev. A 102, 012419 (2020), 2004.04693.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012419
arXiv:2004.04693

[19] J. MacWilliams, Bell Syst. Tech. J. 42, 79 (1963).
https:/​/​doi.org/​10.1002/​j.1538-7305.1963.tb04003.x

[20] S. Bravyi and A. Vargo, Phys. Rev. A 88, 062308 (2013), 1308.6270.
https:/​/​doi.org/​10.1103/​PhysRevA.88.062308
arXiv:1308.6270

Cited by

Could not fetch Crossref cited-by data during last attempt 2020-10-28 11:03:33: Could not fetch cited-by data for 10.22331/q-2020-10-28-352 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2020-10-28 11:03:33).

Source: https://quantum-journal.org/papers/q-2020-10-28-352/

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?