Zephyrnet Logo

Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning

Date:


Zhang Jiang1, Amir Kalev2, Wojciech Mruczkiewicz1, and Hartmut Neven1

1Google Research, Venice, CA 90291
2Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742-2420, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We introduce a fermion-to-qubit mapping defined on ternary trees, where any single Majorana operator on an $n$-mode fermionic system is mapped to a multi-qubit Pauli operator acting nontrivially on $lceil log_3(2n+1)rceil$ qubits. The mapping has a simple structure and is optimal in the sense that it is impossible to construct Pauli operators in any fermion-to-qubit mapping acting nontrivially on less than $log_3(2n)$ qubits on average. We apply it to the problem of learning $k$-fermion reduced density matrix (RDM), a problem relevant in various quantum simulation applications. We show that one can determine individual elements of all $k$-fermion RDMs in parallel, to precision $epsilon$, by repeating a single quantum circuit for $lesssim (2n+1)^k epsilon^{-2}$ times. This result is based on a method we develop here that allows one to determine individual elements of all $k$-qubit RDMs in parallel, to precision $epsilon$, by repeating a single quantum circuit for $lesssim 3^k epsilon^{-2}$ times, independent of the system size. This improves over existing schemes for determining qubit RDMs.

► BibTeX data

► References

[1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics 21, 467 (1982).
https:/​/​doi.org/​10.1007/​BF02650179

[2] S. Lloyd, “Universal Quantum Simulators,” Science 273, 1073 (1996).
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[3] I. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern Physics 86, 153 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.153

[4] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, “Solving strongly correlated electron models on a quantum computer,” Physical Review A 92, 062318 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318

[5] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, “Low-Depth Quantum Simulation of Materials,” Physical Review X 8, 011044 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.011044

[6] Z. Jiang, K. J. Sung, K. Kechedzhi, V. N. Smelyanskiy, and S. Boixo, “Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions,” Physical Review Applied 9, 044036 (2018).
https:/​/​doi.org/​10.1103/​PhysRevApplied.9.044036

[7] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Physical Review Letters 74, 4091 (1995).
https:/​/​doi.org/​10.1103/​PhysRevLett.74.4091

[8] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709 (2002).
https:/​/​doi.org/​10.1038/​nature00784

[9] H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Physics Reports 469, 155 (2008).
https:/​/​doi.org/​10.1016/​j.physrep.2008.09.003

[10] M. H. Devoret, A. Wallraff, and J. M. Martinis, “Superconducting Qubits: A Short Review,” arXiv:0411174 (2004).
arXiv:cond-mat/0411174

[11] G. Wendin, “Quantum information processing with superconducting circuits: a review,” Reports on Progress in Physics. Physical Society (Great Britain) 80, 106001 (2017).
https:/​/​doi.org/​10.1088/​1361-6633/​aa7e1a

[12] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’ÄôBrien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications 5, 4213 (2014).
https:/​/​doi.org/​10.1038/​ncomms5213

[13] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18, 023023 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[14] M. A. Nielsen, “The Fermionic canonical commutation relations and the Jordan-Wigner transform,” Tech. Rep. University of Queensland (2005).
http:/​/​michaelnielsen.org/​blog/​archive/​nones/​fermions_and_jordan_wigner.pdf

[15] J. T. Seeley, M. J. Richard, and P. J. Love, “The Bravyi-Kitaev transformation for quantum computation of electronic structure,” The Journal of Chemical Physics 137, 224109 (2012).
https:/​/​doi.org/​10.1063/​1.4768229

[16] S. B. Bravyi and A. Y. Kitaev, “Fermionic Quantum Computation,” Annals of Physics 298, 210 (2002).
https:/​/​doi.org/​10.1006/​aphy.2002.6254

[17] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and P. J. Love, “The Bravyi-Kitaev transformation: Properties and applications,” International Journal of Quantum Chemistry 115, 1431 (2015).
https:/​/​doi.org/​10.1002/​qua.24969

[18] V. Havlíček, M. Troyer, and J. D. Whitfield, “Operator locality in the quantum simulation of fermionic models,” Physical Review A 95, 032332 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.032332

[19] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr??, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[20] A. Y. Vlasov, “Clifford algebras, Spin groups and qubit trees,” arXiv:1904.09912 (2019).
arXiv:1904.09912

[21] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 1st ed. (Cambridge University Press, 2000).

[22] S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, “Reduced density matrix functional for many-electron systems,” Physical Review B 78, 201103 (2008).
https:/​/​doi.org/​10.1103/​PhysRevB.78.201103

[23] M. Fagotti and F. H. L. Essler, “Reduced density matrix after a quantum quench,” Physical Review B 87, 245107 (2013).
https:/​/​doi.org/​10.1103/​PhysRevB.87.245107

[24] N. C. Rubin, R. Babbush, and J. McClean, “Application of fermionic marginal constraints to hybrid quantum algorithms,” New Journal of Physics 20, 053020 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aab919

[25] G. Gidofalvi and D. A. Mazziotti, “Molecular properties from variational reduced-density-matrix theory with three-particle N-representability conditions,” The Journal of Chemical Physics 126, 024105 (2007).
https:/​/​doi.org/​10.1063/​1.2423008

[26] C. Overy, G. H. Booth, N. S. Blunt, J. J. Shepherd, D. Cleland, and A. Alavi, “Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo,” The Journal of Chemical Physics 141, 244117 (2014).
https:/​/​doi.org/​10.1063/​1.4904313

[27] T. E. O’Brien, B. Senjean, R. Sagastizabal, X. Bonet-Monroig, A. Dutkiewicz, F. Buda, L. DiCarlo, and L. Visscher, “Calculating energy derivatives for quantum chemistry on a quantum computer,” npj Quantum Information 5, 1 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0213-4

[28] J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong, “Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states,” Physical Review A 95, 042308 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.042308

[29] T. Takeshita, N. C. Rubin, Z. Jiang, E. Lee, R. Babbush, and J. R. McClean, “Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources,” Physical Review X 10, 011004 (2020).
https:/​/​doi.org/​10.1103/​PhysRevX.10.011004

[30] J. Cotler and F. Wilczek, “Quantum Overlapping Tomography,” Physical Review Letters 124, 100401 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.100401

[31] X. Bonet-Monroig, R. Babbush, and T. E. O’Brien, “Nearly optimal measurement scheduling for partial tomography of quantum states,” arXiv:1908.05628 (2019).
arXiv:1908.05628

[32] J. Řeháček, B.-G. Englert, and D. Kaszlikowski, “Minimal qubit tomography,” Phys. Rev. A 70, 052321 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.052321

[33] I. Hamamura and T. Imamichi, “Efficient evaluation of quantum observables using entangled measurements,” arXiv:1909.09119 (2019).
arXiv:1909.09119

[34] A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Verteletskyi, “Unitary Partitioning Approach to the Measurement Problem in the Variational Quantum Eigensolver Method,” Journal of Chemical Theory and Computation 16, 190 (2020).
https:/​/​doi.org/​10.1021/​acs.jctc.9b00791

[35] A. Zhao, A. Tranter, W. M. Kirby, S. F. Ung, A. Miyake, and P. Love, “Measurement reduction in variational quantum algorithms,” arXiv:1908.08067 (2019).
arXiv:1908.08067

[36] W. J. Huggins, J. McClean, N. Rubin, Z. Jiang, N. Wiebe, K. B. Whaley, and R. Babbush, “Efficient and Noise Resilient Measurements for Quantum Chemistry on Near-Term Quantum Computers,” arXiv:1907.13117 (2019).
arXiv:1907.13117

[37] D. A. Mazziotti, ed., Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules (Wiley-Interscience, 2009).

[38] M. Steudtner and S. Wehner, “Quantum codes for quantum simulation of fermions on a square lattice of qubits,” Physical Review A 99, 022308 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.022308

[39] K. Setia and J. D. Whitfield, “Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer,” The Journal of Chemical Physics 148, 164104 (2018).
https:/​/​doi.org/​10.1063/​1.5019371

[40] Z. Jiang, J. McClean, R. Babbush, and H. Neven, “Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations,” Physical Review Applied 12, 064041 (2019).
https:/​/​doi.org/​10.1103/​PhysRevApplied.12.064041

[41] C. A. Fuchs, M. C. Hoang, and B. C. Stacey, “The SIC question: History and state of play,” Axioms 6, 21 (2017).
https:/​/​doi.org/​10.3390/​axioms6030021

[42] H. B. Dang, K. Blanchfield, I. Bengtsson, and D. M. Appleby, “Linear dependencies in Weyl–Heisenberg orbits,” Quantum Information Processing 12, 3449 (2013).
https:/​/​doi.org/​10.1007/​s11128-013-0609-6

Cited by

[1] Alexander Yu. Vlasov, “Clifford algebras, Spin groups and qubit trees”, arXiv:1904.09912.

[2] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan, “Quantum computational chemistry”, Reviews of Modern Physics 92 1, 015003 (2020).

[3] Hsin-Yuan Huang, Richard Kueng, and John Preskill, “Predicting Many Properties of a Quantum System from Very Few Measurements”, arXiv:2002.08953.

[4] Adrian Chapman and Steven T. Flammia, “Characterization of solvable spin models via graph invariants”, arXiv:2003.05465.

[5] Ikko Hamamura and Takashi Imamichi, “Efficient evaluation of quantum observables using entangled measurements”, arXiv:1909.09119.

The above citations are from SAO/NASA ADS (last updated successfully 2020-06-04 09:05:06). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2020-06-04 09:05:04: Could not fetch cited-by data for 10.22331/q-2020-06-02-276 from Crossref. This is normal if the DOI was registered recently.

Source: https://quantum-journal.org/papers/q-2020-06-04-276/

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?