Connect with us

Quantum

On the merits of flatworm reproduction

Published

on

On my right sat a quantum engineer. She was facing a melanoma specialist who works at a medical school. Leftward of us sat a networks expert, a flatworm enthusiast, and a condensed-matter theorist.

Farther down sat a woman who slices up mouse brains. 

Welcome to “Coherent Spins in Biology,” a conference that took place at the University of California, Los Angeles (UCLA) this past December. Two southern Californians organized the workshop: Clarice Aiello heads UCLA’s Quantum Biology Tech lab. Thorsten Ritz, of the University of California, Irvine, cofounded a branch of quantum biology.

Clarice logo

Quantum biology served as the conference’s backdrop. According to conventional wisdom, quantum phenomena can’t influence biology significantly: Biological systems have high temperatures, many particles, and fluids. Quantum phenomena, such as entanglement (a relationship that quantum particles can share), die quickly under such conditions.

Yet perhaps some survive. Quantum biologists search for biological systems that might use quantum resources. Then, they model and measure the uses and resources. Three settings (at least) have held out promise during the past few decades: avian navigation, photosynthesis, and olfaction. You can read about them in this book, cowritten by a conference participant for the general public. I’ll give you a taste (or a possibly quantum smell?) by sketching the avian-navigation proposal, developed by Thorsten and colleagues.

Bird + flower

Birds migrate southward during the autumn and northward during the spring. How do they know where to fly? At least partially by sensing the Earth’s magnetic field, which leads compass needles to point northward. How do birds sense the field?

Possibly with a protein called “cryptochrome.” A photon (a particle of light) could knock an electron out of part of the protein and into another part. Each part would have one electron that lacked a partner. The electrons would share entanglement. One electron would interact with the Earth’s magnetic field differently than its partner, because its surroundings would differ. (Experts: The electrons would form a radical pair. One electron would neighbor different atoms than the other, so the electron would experience a different local magnetic field. The discrepancy would change the relative phase between the electrons’ spins.) The discrepancy could affect the rate at which the chemical system could undergo certain reactions. Which reactions occur could snowball into large and larger effects, eventually signaling the brain about where the bird should fly.

Angry bird

Quantum mechanics and life rank amongst the universe’s mysteries. How could a young researcher resist the combination? A postdoc warned me away, one lunchtime at the start of my PhD. Quantum biology had enjoyed attention several years earlier, he said, but noise the obscured experimental data. Controversy marred the field.

I ate lunch with that postdoc in 2013. Interest in quantum biology is reviving, as evidenced in the conference. Two reasons suggested themselves: new technologies and new research avenues. For example, Thorsten described the disabling and deletion of genes that code for cryptochrome. Such studies require years’ more work but might illuminate whether cryptochrome affects navigation.

Open door

The keynote speaker, Harvard’s Misha Lukin, illustrated new technologies and new research avenues. Misha’s lab has diamonds that contain quantum defects, which serve as artificial atoms. The defects sense tiny magnetic fields and temperatures. Misha’s group applies these quantum sensors to biology problems.

For example, different cells in an embryo divide at different times. Imagine reversing the order in which the cells divide. Would the reversal harm the organism? You could find out by manipulating the temperatures in different parts of the embryo: Temperature controls the rate at which cells divide.

Misha’s team injected nanoscale diamonds into a worm embryo. (See this paper for a related study.) The diamonds reported the temperature at various points in the worm. This information guided experimentalists who heated the embryo with lasers.

The manipulated embryos grew into fairly normal adults. But their cells, and their descendants’ cells, cycled through the stages of life slowly. This study exemplified, to me, one of the most meaningful opportunities for quantum physicists interested in biology: to develop technologies and analyses that can answer biology questions.

Thermometer

I mentioned, in an earlier blog post, another avenue emerging in quantum biology: Physicist Matthew Fisher proposed a mechanism by which entanglement might enhance coordinated neuron firing. My collaborator Elizabeth Crosson and I analyzed how the molecules in Matthew’s proposal—Posner clusters—could process quantum information. The field of Posner quantum biology had a population of about two, when Elizabeth and I entered, and I wondered whether anyone would join us.

The conference helped resolve my uncertainty. Three speakers (including me) presented work based on Matthew’s; two other participants were tilling the Posner soil; and another speaker mentioned Matthew’s proposal. The other two Posner talks related data from three experiments. The experimentalists haven’t finished their papers, so I won’t share details. But stay tuned.

Posner 2

Posner molecule (image by Swift et al.)

Clarice and Thorsten’s conference reminded me of a conference I’d participated in at the end of my PhD: Last month, I moonlighted as a quantum biologist. In 2017, I moonlighted as a quantum-gravity theorist. Two years earlier, I’d been dreaming about black holes and space-time. At UCLA, I was finishing the first paper I’ve coauthored with biophysicists. What a toolkit quantum information theory and thermodynamics provide, that it can unite such disparate fields. 

The contrast—on top of what I learned at UCLA—filled my mind for weeks. And reminded me of the description of asexual reproduction that we heard from the conference’s flatworm enthusiast. According to Western Michigan University’s Wendy Beane, a flatworm “glues its butt down, pops its head off, and grows a new one. Y’know. As one does.” 

I hope I never flinch from popping my head off and growing a new one—on my quantum-information-thermodynamics spine—whenever new science calls for figuring out.

With thanks to Clarice, Thorsten, and UCLA for their invitation and hospitality.

Source: https://quantumfrontiers.com/2020/01/26/on-the-merits-of-flatworm-reproduction/

Quantum

Achieving superlubricity with graphene

Published

on

Sometimes, experimental results spark enormous curiosity inspiring a myriad of questions and ideas for further experimentation. In 2004, Geim and Novoselov, from The University of Manchester, isolated a single layer of graphene from bulk graphite with the “Scotch Tape Method” for which they were awarded the 2010 Nobel Prize in Physics.  This one experimental result has branched out countless times serving as a source of inspiration in as many different fields.  We are now in the midst of an array of branching-out in graphene research, and one of those branches gaining attention is ultra low friction observed between graphene and other surface materials.  

Much has been learned about graphene in the past 15 years through an immense amount of research, most of which, in non-mechanical realms (e.g., electron transport measurements, thermal conductivity, pseudo magnetic fields in strain engineering).  However, superlubricity, a mechanical phenomenon, has become the focus among many research groups. Mechanical measurements have famously shown graphene’s tensile strength to be hundreds of times that of the strongest steel, indisputably placing it atop the list of construction materials best for a superhero suit.  Superlubricity is a tribological property of graphene and is, arguably, as equally impressive as graphene’s tensile strength.

Tribology is the study of interacting surfaces during relative motion including sources of friction and methods for its reduction.  It’s not a recent discovery that coating a surface with graphite (many layers of graphene) can lower friction between two sliding surfaces.  Current research studies the precise mechanisms and surfaces for which to minimize friction with single or several layers of graphene. 

Research published in Nature Materials in 2018 measures friction between surfaces under constant load and velocity. The experiment includes two groups; one consisting of two graphene surfaces (homogeneous junction), and another consisting of graphene and hexagonal boron nitride (heterogeneous junction).   The research group measures friction using Atomic Force Microscopy (AFM).  The hexagonal boron nitride (or graphene for a homogeneous junction) is fixed to the stage of the AFM while the graphene slides atop.  Loads are held constant at 20 𝜇N and sliding velocity constant at 200 nm/s. Ultra low friction is observed for homogeneous junctions when the underlying crystalline lattice structures of the surfaces are at a relative angle of 30 degrees.  However, this ultra low friction state is very unstable and upon sliding, the surfaces rotate towards a locked-in lattice alignment. Friction varies with respect to the relative angle between the two surface’s crystalline lattice structures. Minimum (ultra low) friction occurs at a relative angle of 30 degrees reaching a maximum when locked-in lattice alignment is realized upon sliding. While in a state of lattice alignment, shearing is rendered impossible with the experimental setup due to the relatively large amount of friction.

Friction varies with respect to the relative angle of the crystalline lattice structures and is, therefore, anisotropic.  For example, the fact it takes less force to split wood when an axe blade is applied parallel to its grains than when applied perpendicularly illustrates the anisotropic nature of wood, as the force to split wood is dependent upon the direction along which the force is applied.  Frictional anisotropy is greater in homogeneous junctions because the tendency to orient into a stuck, maximum friction alignment, is greater than with heterojunctions.  In fact, heterogeneous junctions experience frictional anisotropy three orders of magnitude less than homogeneous junctions. Heterogenous junctions display much less frictional anisotropy due to a lattice misalignment when the angle between the lattice vectors is at a minimum.  In other words, the graphene and hBN crystalline lattice structures are never parallel because the materials differ, therefore, never experience the impact of lattice alignment as do homogenous junctions. Hence, heterogeneous junctions do not become stuck in a high friction state that characterizes homogeneous ones, and experience ultra low friction during sliding at all relative crystalline lattice structure angles.

Presumably, to increase applicability, upscaling to much larger loads will be necessary. A large scale cost effective method to dramatically reduce friction would undoubtedly have an enormous impact on a great number of industries.  Cost efficiency is a key component to the realization of graphene’s potential impact, not only as it applies to superlubricity, but in all areas of application.  As access to large amounts of affordable graphene increases, so will experiments in fabricating devices exploiting the extraordinary characteristics which have placed graphene and graphene based materials on the front lines of material research the past couple decades.

Source: https://quantumfrontiers.com/2020/03/24/achieving-superlubricity-with-graphene/

Continue Reading

Quantum

Erratum: Analytic model of the energy spectrum of a graphene quantum dot in a perpendicular magnetic field [Phys. Rev. B 78, 195427 (2008)]

Published

on

COVID-19 has impacted many institutions and organizations around the world, disrupting the progress of research. Through this difficult time APS and the Physical Review editorial office are fully equipped and actively working to support researchers by continuing to carry out all editorial and peer-review functions and publish research in the journals as well as minimizing disruption to journal access.

We appreciate your continued effort and commitment to helping advance science, and allowing us to publish the best physics journals in the world. And we hope you, and your loved ones, are staying safe and healthy.

Source: http://link.aps.org/doi/10.1103/PhysRevB.95.039901

Continue Reading

Quantum

Erratum: More realistic Hamiltonians for the fractional quantum Hall regime in GaAs and graphene [Phys. Rev. B 87, 245129 (2013)]

Published

on

COVID-19 has impacted many institutions and organizations around the world, disrupting the progress of research. Through this difficult time APS and the Physical Review editorial office are fully equipped and actively working to support researchers by continuing to carry out all editorial and peer-review functions and publish research in the journals as well as minimizing disruption to journal access.

We appreciate your continued effort and commitment to helping advance science, and allowing us to publish the best physics journals in the world. And we hope you, and your loved ones, are staying safe and healthy.

Source: http://link.aps.org/doi/10.1103/PhysRevB.92.159902

Continue Reading
Blockchain29 mins ago

$10 Million Burned on BitMEX Shorts as Bitcoin Surges to $9,700

Blockchain34 mins ago

Bitcoin recovers from downward price spiral

Blockchain38 mins ago

Cryptocurrency News From Japan: May 24 – May 30 in Review

Blockchain40 mins ago

Trump Tower is ‘under siege’ as Chicago Police make arrests to defend the president’s building

Blockchain1 hour ago

Ethereum Erupts 10% Higher: Here’s Why Analysts Think More Upside Is Imminent

Blockchain1 hour ago

Cointelegraph Joins World Economic Forum’s Strategic Intelligence Network

Blockchain1 hour ago

Bitcoin Monthly Close is 1 Day Away: Here’s the Level That May Trigger a Big Rally

Blockchain2 hours ago

Ethereum Price Prediction: ETH/USD Regains Ground But $250 Still Unconquered

Blockchain2 hours ago

Bitcoin: One size doesn’t fit all for UTXO management

Blockchain2 hours ago

“I Didn’t Leave My Hotel, Hardly Ate” – How Lewis Hamilton Struggled With Defeats in F1

Blockchain2 hours ago

Peter Schiff Claims The Latest Bitcoin Rally Is Due To Major Manipulation By Whales

Blockchain2 hours ago

Bitcoin Rising, Satoshi Discoveries, & Google Enters the Race: Bad Crypto News of the Week

Blockchain3 hours ago

Daily Market Report for May 30 2020

Blockchain3 hours ago

Bitcoin’s Rise has Not Been Supported by Growing Volume; What This Means

Blockchain3 hours ago

Bitcoin IRA Halving Report Suggests $280,000 Price for BTC

Blockchain3 hours ago

Bitcoin Price Prediction: BTC/USD Price Ranges as the Coin Holds $9,300 Support

Blockchain3 hours ago

Crypto Strategist Who Accurately Called Bitcoin Bear Market Bottom Says BTC Is Poised for An Explosive Breakout

Blockchain3 hours ago

Tether might threaten Ether’s position as payment tool

Blockchain4 hours ago

CME’s Open Interest Suggests a Bitcoin Price Jump is Imminent

Blockchain4 hours ago

Samsung May Have Appointed New Blockchain Leadership

Trending