Plato Data Intelligence.
Vertical Search & Ai.

On the Coattails of Quantum Supremacy


Most readers have by now heard that Google has “achieved” quantum “supremacy”. Notice the only word not in quotes is “quantum”, because unlike previous proposals that have also made some waves, quantumness is mostly not under review here. (Well, neither really are the other two words, but that story has already been covered quite eloquently by John, Scott, and Toby.) The Google team has managed to engineer a device that, although noisy, can do the right thing a large-enough fraction of the time for people to be able to “quantify its quantumness”.

However, the Google device, while less so than previous incarnations, is still noisy. Future devices like it will continue to be noisy. Noise is what makes quantum computers so darn difficult to build; it is what destroys the fragile quantum superpositions that we are trying so hard to protect (remember, unlike a classical computer, we are not protecting things we actually observe, but their superposition).

Protecting quantum information is like taking your home-schooled date (who has lived their entire life in a bunker) to the prom for the first time. It is a fun and necessary part of a healthy relationship to spend time in public, but the price you pay is the possibility that your date will hit it off with someone else. This will leave you abandoned, dancing alone to Taylor Swift’s “You Belong With Me” while crying into your (spiked?) punch.

When the environment corrupts your quantum date.

The high school sweetheart/would-be dance partner in the above provocative example is the quantum superposition — the resource we need for a working quantum computer. You want it all to yourself, but your adversary — the environment — wants it too. No matter how much you try to protect it, you’ll have to observe it eventually (after all, you want to know the answer to your computation). And when you do (take your date out onto the crowded dance floor), you run the risk of the environment collapsing the information before you do, leaving you with nothing.

Protecting quantum information is also like (modern!) medicine. The fussy patient is the quantum information, stored in delicate superposition, while quantumists are the doctors aiming to prevent the patient from getting sick (or “corrupted”). If our patient incurs say “quasiparticle poisoning”, we first diagnose the patient’s syndromes, and, based on this diagnosis, apply procedures like “lattice surgery” and “state injection” to help our patient successfully recover.

The medical analogy to QEC, noticed first by Daniel Litinski. All terms are actually used in papers. Cartoon by Jose Gonzalez.

Error correction with qubits

Error correction sounds hard, and it should! Not to fear: plenty of very smart people have thought hard about this problem, and have come up with a plan — to redundantly encode the quantum superposition in a way that allows protection from errors caused by noise. Such quantum error-correction is an expansion of the techniques we currently use to protect classical bits in your phone and computer, but now the aim is to protect, not the definitive bit states 0 or 1, but their quantum superpositions. Things are even harder now, as the protection machinery has to do its magic without disturbing the superposition itself (after all, we want our quantum calculation to run to its conclusion and hack your bank).

For example, consider a qubit — the fundamental quantum unit represented by two shelves (which, e.g., could be the ground and excited states of an atom, the absence or presence of a photon in a box, or the zeroth and first quanta of a really cold LC circuit). This qubit can be in any quantum superposition of the two shelves, described by 2 probability amplitudes, one corresponding to each shelf. Observing this qubit will collapse its state onto either one of the shelves, changing the values of the 2 amplitudes. Since the resource we use for our computation is precisely this superposition, we definitely do not want to observe this qubit during our computation. However, we are not the only ones looking: the environment (other people at the prom: the trapping potential of our atom, the jiggling atoms of our metal box, nearby circuit elements) is also observing this system, thereby potentially manipulating the stored quantum state without our knowledge and ruining our computation.

Now consider 50 such qubits. Such a space allows for a superposition with 2^{50} different amplitudes (instead of just 2^1 for the case of a single qubit). We are once again plagued by noise coming from the environment. But what if we now, less ambitiously, want to store only one qubit’s worth of information in this 50-qubit system? Now there is room to play with! A clever choice of how to do this (a.k.a. the encoding) helps protect from the bad environment. 

The entire prospect of building a bona-fide quantum computer rests on this extra overhead or quantum redundancy of using a larger system to encode a smaller one. It sounds daunting at first: if we need 50 physical qubits for each robust logical qubit, then we’d need “I-love-you-3000” physical qubits for 60 logical ones? Yes, this is a fact we all have to live with. But granted we can scale up our devices to that many qubits, there is no fundamental obstacle that prevents us from then using error correction to make next-level computers.

To what extent do we need to protect our quantum superposition from the environment? It would be too ambitious to protect it from a meteor shower. Or a power outage (although that would be quite useful here in California). So what then can we protect against?

Our working answer is local noise — noise that affects only a few qubits that are located near each other in the device. We can never be truly certain if this type of noise is all that our quantum computers will encounter. However, our belief that this is the noise we should focus on is grounded in solid physical principles — that nature respects locality, that affecting things far away from you is harder than making an impact nearby. (So far Google has not reported otherwise, although much more work needs to be done to verify this intuition.)

The harmonic oscillator

In what other ways can we embed our two-shelf qubit into a larger space? Instead of scaling up using many physical qubits, we can utilize a fact that we have so far swept under the rug: in any physical system, our two shelves are already part of an entire bookcase! Atoms have more than one excited state, there can be more than one photon in a box, and there can be more than one quantum in a cold LC circuit. Why don’t we use some of that higher-energy space for our redundant encoding?

The noise in our bookcase will certainly be different, since the structure of the space, and therefore the notion of locality, is different. How to cope with this? The good news is that such a space — the space of the harmonic oscillator — also has a(t least one) natural notion of locality!

Whatever the incarnation, the oscillator has associated with it a position and momentum (different jargon for these quantities may be used, depending on the context, but you can just think of a child on a swing, just quantized). Anyone who knows the joke about Heisenberg getting pulled over, will know that these two quantities cannot be set simultaneously.

Cartoon by Jose Gonzalez.

Nevertheless, local errors can be thought of as small shifts in position or momentum, while nonlocal errors are ones that suddenly shift our bewildered swinging quantized child from one side of the swing to the other.

Armed with a local noise model, we can extend our know-how from multi-qubit land to the oscillator. One of the first such oscillator codes were developed by Gottesman, Kitaev, and Preskill (GKP). Proposed in 2001, GKP encodings posed a difficult engineering challenge: some believed that GKP states could never be realized, that they “did not exist”. In the past few years however, GKP states have been realized nearly simultaneously in two experimental platforms. (Food for thought for the non-believers!)

Parallel to GKP codes, another promising oscillator encoding using cat states is also being developed. This encoding has historically been far easier to create experimentally. It is so far the only experimental procedure achieving the break-even point, at which the actively protected logical information has the same lifetime as the system’s best unprotected degree of freedom.

Can we mix and match all of these different systems? Why yes! While Google is currently trying to build the surface code out of qubits, using oscillators (instead of qubits) for the surface code and encoding said oscillators either in GKP (see related IBM post) [1,2,3] or cat [4,5] codes is something people are seriously considering. There is even more overhead, but the extra information one gets from the correction procedure might make for a more fault-tolerant machine. With all of these different options being explored, it’s an exciting time to be into quantum!


It turns out there are still other systems we can consider, although because they are sufficiently more “out there” at the moment, I should first say “bear with me!” as I explain. Forget about atoms, photons in a box, and really cold LC circuits. Instead, consider a rigid 3-dimensional object whose center of mass has been pinned in such a way that the object can rotate any way it wants. Now, “quantize” it! In other words, consider the possibility of having quantum superpositions of different orientations of this object. Just like superpositions of a dead and alive cat, of a photon and no photon, the object can be in quantum superposition of oriented up, sideways, and down, for example. Superpositions of all possible orientations then make up our new configuration space (read: playground), and we are lucky that it too inherits many of the properties we know and love from its multi-qubit and oscillator cousins.

Examples of rigid bodies include airplanes (which can roll, pitch and yaw, even while “fixed” on a particular trajectory vector) and robot arms (which can rotate about multiple joints). Given that we’re not quantizing those (yet?), what rigid body should we have in mind as a serious candidate? Well, in parallel to the impressive engineering successes of the multi-qubit and oscillator paradigms, physicists and chemists have made substantial progress in trapping and cooling molecules. If a trapped molecule is cold enough, it’s vibrational and electronic states can be neglected, and its rotational states form exactly the rigid body we are interested in. Such rotational states, as far as we can tell, are not in the realm of Avengers-style science fiction.

Superpositions of molecular orientations don’t violate the Deutsch proposition.

The idea to use molecules for quantum computing dates all the way back to a 2001 paper by Dave DeMille, but in a recent paper by Jacob Covey, John Preskill, and myself, we propose a framework of how to utilize the large space of molecular orientations to protect against (you guessed it!) a type of local noise. In the second part of the story, called “Quantum Error Correction with Molecules“, I will cover a particular concept that is not only useful for a proper error-correcting code (classical and quantum), but also one that is quite fun to try and understand. The concept is based on a certain kind of tiling, called Voronoi tiles or Thiessen polygons, which can be used to tile anything from your bathroom floor to the space of molecular orientations. Stay tuned!



Latest Intelligence


Latest Intelligence


Latest Intelligence