Connect with us


NQIT Hub Launch



Academics and industry partners of the NQIT Hub gathered with representatives from the EPSRC and local government to celebrate the launch of the ambitious project which will look to combine state of the art systems for controlling particles of light (photons) together with devices that control matter at the atomic level to develop technologies for the future of communications and computing.

NQIT is one of four Quantum Technology Hubs that will be funded by the Engineering and Physical Sciences Research Council (EPSRC) from the £270 million investment in the UK National Quantum Technologies Programme announced by the Chancellor, George Osborne in his Autumn Statement of 2013. NQIT will receive a total of almost £38m of government funding.

Within NQIT are over a dozen industrial partners and nine universities: Oxford, Bath, Cambridge, Edinburgh, Leeds, Southampton, Strathclyde, Sussex and Warwick.

The flagship goal of NQIT is to build the Q20:20 machine, a fully-functional small quantum computer. This device, targeted to be operational within five years, would far exceed the size of any previous quantum information processor. Crucially its design is fundamentally scalable, so that it would open the pathway to quantum computers big enough to tackle any problem.

Applications of the technology include ‘machine learning’ – the challenge of making a machine that can understand patterns and meaning within data without having to be ‘taught’ by a human.

‘Quantum Computing will enable users to solve problems that are completely intractable on conventional supercomputers. Meanwhile Quantum Simulation provides a way to understand and predict the properties of complex systems like advanced new materials or drugs, by using a quantum device to mimic the system under study’ said NQIT’s Director Professor Ian Walmsley of Oxford University’s Department of Physics

‘The Oxford-led Hub will use a novel network architecture, where building blocks such as trapped ions, superconducting circuits, or electron spins in solids, are linked up by photonic quantum interconnects. This naturally aligns with the work at other Hubs, through systems like distributed sensors and communications networks.’


Continue Reading


Approximating Hamiltonian dynamics with the Nyström method



Alessandro Rudi1, Leonard Wossnig2,3, Carlo Ciliberto2, Andrea Rocchetto2,4,5, Massimiliano Pontil6, and Simone Severini2

1INRIA – Sierra project team, Paris, France
2Department of Computer Science, University College London, London, United Kingdom
3Rahko Ltd., London, United Kingdom
4Department of Computer Science, University of Texas at Austin, Austin, United States
5Department of Computer Science, University of Oxford, Oxford, United Kingdom
6Computational Statistics and Machine Learning, IIT, Genoa, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Simulating the time-evolution of quantum mechanical systems is BQP-hard and expected to be one of the foremost applications of quantum computers. We consider classical algorithms for the approximation of Hamiltonian dynamics using subsampling methods from randomized numerical linear algebra. We derive a simulation technique whose runtime scales polynomially in the number of qubits and the Frobenius norm of the Hamiltonian. As an immediate application, we show that sample based quantum simulation, a type of evolution where the Hamiltonian is a density matrix, can be efficiently classically simulated under specific structural conditions. Our main technical contribution is a randomized algorithm for approximating Hermitian matrix exponentials. The proof leverages a low-rank, symmetric approximation via the Nyström method. Our results suggest that under strong sampling assumptions there exist classical poly-logarithmic time simulations of quantum computations.

► BibTeX data

► References

[1] Aharonov and Ta-Shma “Adiabatic Quantum State Generation and Statistical Zero Knowledge” Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing 20-29 (2003).

[2] Aleksandrov and Peller “Operator Lipschitz functions” Russian Mathematical Surveys 71, 605 (2016).

[3] Belabbas and Wolfe “Fast low-rank approximation for covariance matrices” 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007. 293-296 (2007).

[4] Belabbas and Wolfe “On sparse representations of linear operators and the approximation of matrix products” 42nd Annual Conference on Information Sciences and Systems 258-263 (2008).

[5] Berry, Childs, and Kothari, “Hamiltonian simulation with nearly optimal dependence on all parameters” IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS) 792-809 (2015).

[6] Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, and Lloyd, “Quantum machine learning” Nature 549, 195 (2017).

[7] Bravyi, Browne, Calpin, Campbell, Gosset, and Howard, “Simulation of quantum circuits by low-rank stabilizer decompositions” arXiv preprint arXiv:1808.00128 (2018).

[8] Chia, Gilyén, Li, Lin, Tang, and Wang, “Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning” arXiv preprint arXiv:1910.06151 (2019).

[9] Childs and Kothari “Simulating Sparse Hamiltonians with Star Decompositions” Proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography 94-103 (2011).

[10] Childs and Wiebe “Hamiltonian Simulation Using Linear Combinations of Unitary Operations” Quantum Info. Comput. 12, 901-924 (2012).

[11] Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman, “Exponential Algorithmic Speedup by a Quantum Walk” Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing 59-68 (2003).

[12] Ciliberto, Herbster, Ialongo, Pontil, Rocchetto, Severini, and Wossnig, “Quantum machine learning: a classical perspective” Proc. R. Soc. A 474, 20170551 (2018).

[13] Drineas, Kannan, and Mahoney, “Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication” SIAM Journal on Computing 36, 132-157 (2006).

[14] Drineas, Kannan, and Mahoney, “Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix” SIAM Journal on computing 36, 158-183 (2006).

[15] Drineas and Mahoney “On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning” J. Mach. Learn. Res. 6, 2153-2175 (2005).

[16] Drineas and Mahoney “Lectures on randomized numerical linear algebra” The Mathematics of Data 25, 1 (2018).

[17] Drineas, Mahoney, Muthukrishnan, and Sarlós, “Faster Least Squares Approximation” Numer. Math. 117, 219-249 (2011).

[18] Fowlkes, Belongie, Chung, and Malik, “Spectral Grouping Using the Nyström Method” IEEE Trans. Pattern Anal. Mach. Intell. 26, 214-225 (2004).

[19] Frieze, Kannan, and Vempala, “Fast Monte-Carlo Algorithms for Finding Low-Rank Approximations” J. ACM 51, 1025-1041 (2004).

[20] Haegeman, Cirac, Osborne, Pižorn, Verschelde, and Verstraete, “Time-dependent variational principle for quantum lattices” Physical review letters 107, 070601 (2011).

[21] Higham “The Scaling and Squaring Method for the Matrix Exponential Revisited” SIAM J. Matrix Anal. Appl. 26, 1179-1193 (2005).

[22] Higham “The Scaling and Squaring Method for the Matrix Exponential Revisited” SIAM Rev. 51, 747-764 (2009).

[23] Hsu “Weighted sampling of outer products” arXiv preprint arXiv: 1410.4429 (2014).

[24] Huang, Newman, and Szegedy, “Explicit lower bounds on strong quantum simulation” arXiv preprint arXiv:1804.10368 (2018).

[25] Jónsson, Bauer, and Carleo, “Neural-network states for the classical simulation of quantum computing” arXiv preprint arXiv:1808.05232 (2018).

[26] Kerenidis and Prakash “Quantum recommendation systems” arXiv preprint arXiv:1603.08675 (2016).

[27] Kimmel, Lin, Low, Ozols, and Yoder, “Hamiltonian simulation with optimal sample complexity” npj Quantum Information 3, 13 (2017).

[28] Kumar, Mohri, and Talwalkar, “On Sampling-Based Approximate Spectral Decomposition” Proceedings of the 26th Annual International Conference on Machine Learning 553-560 (2009).

[29] Kumar, Mohri, and Talwalkar, “Sampling methods for the Nyström method” Journal of Machine Learning Research 13, 981-1006 (2012).

[30] Li, Kwok, and Lu, “Making Large-Scale Nyström Approximation Possible” Proceedings of the 27th International Conference on International Conference on Machine Learning 631-638 (2010).

[31] Lloyd “Universal Quantum Simulators” Science 273, 1073-1078 (1996).

[32] Lloyd, Mohseni, and Rebentrost, “Quantum principal component analysis” Nature Physics 10, 631 (2014).

[33] Lowand Chuang “Hamiltonian Simulation by Uniform Spectral Amplification” arXiv preprint arXiv:1707.05391 (2017).

[34] Mackey, Talwalkar, and Jordan, “Divide-and-Conquer Matrix Factorization” Proceedings of the 24th International Conference on Neural Information Processing Systems 1134-1142 (2011).

[35] Mahoney “Randomized algorithms for matrices and data” Foundations and Trends® 3, 123-224 (2011).

[36] Mathias “Approximation of matrix-valued functions” SIAM journal on matrix analysis and applications 14, 1061-1063 (1993).

[37] Al-Mohyand Higham “A new scaling and squaring algorithm for the matrix exponential” SIAM Journal on Matrix Analysis and Applications 31, 970-989 (2009).

[38] Al-Mohyand Higham “Computing the action of the matrix exponential, with an application to exponential integrators” SIAM journal on scientific computing 33, 488-511 (2011).

[39] Nakamoto “A norm inequality for Hermitian operators” The American mathematical monthly 110, 238 (2003).

[40] Nyström “Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben” Acta Mathematica 54, 185-204 (1930).

[41] Orecchia, Sachdeva, and Vishnoi, “Approximating the Exponential, the Lanczos Method and an Õ(m)-Time Spectral Algorithm for Balanced Separator” Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing 1141-1160 (2012).

[42] Orús “A practical introduction to tensor networks: Matrix product states and projected entangled pair states” Annals of Physics 349, 117-158 (2014).

[43] Rebentrost, Mohseni, and Lloyd, “Quantum support vector machine for big data classification” Physical review letters 113, 130503 (2014).

[44] Rebentrost, Schuld, Wossnig, Petruccione, and Lloyd, “Quantum gradient descent and Newton’s method for constrained polynomial optimization” New Journal of Physics 21, 073023 (2019).

[45] Rudi, Camoriano, and Rosasco, “Less is More: Nyström Computational Regularization” Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 1 1657-1665 (2015).

[46] Rudi, Camoriano, and Rosasco, “Less is More: Nyström Computational Regularization” arXiv preprint arXiv:1507.04717 (2015).

[47] Schuld, Sinayskiy, and Petruccione, “Prediction by linear regression on a quantum computer” Physical Review A 94, 022342 (2016).

[48] Schwarz and Nest “Simulating quantum circuits with sparse output distributions” arXiv preprint arXiv:1310.6749 (2013).

[49] Spielman and Teng “Nearly-Linear Time Algorithms for Graph Partitioning, Graph Sparsification, and Solving Linear Systems” Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing 81-90 (2004).

[50] Spielman and Teng “Spectral sparsification of graphs” SIAM Journal on Computing 40, 981-1025 (2011).

[51] Suzuki “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems” Communications in Mathematical Physics 51, 183-190 (1976).

[52] Talwalkar, Kumar, and Rowley, “Large-scale manifold learning” IEEE Conference on Computer Vision and Pattern Recognition 1-8 (2008).

[53] Tang “A Quantum-Inspired Classical Algorithm for Recommendation Systems” Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing 217-228 (2019).

[54] Tropp “User-Friendly Tail Bounds for Sums of Random Matrices” Found. Comput. Math. 12, 389-434 (2012).

[55] Trotter “On the product of semi-groups of operators” Proceedings of the American Mathematical Society 10, 545-551 (1959).

[56] Van Den Nest “Classical simulation of quantum computation, the Gottesman” Quantum Information & Computation 10, 258-271 (2010).

[57] Verstraete, Garcia-Ripoll, and Cirac, “Matrix product density operators: Simulation of finite-temperature and dissipative systems” Physical review letters 93, 207204 (2004).

[58] Verstraete, Murg, and Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems” Advances in Physics 57, 143-224 (2008).

[59] Vidal “Efficient Simulation of One-Dimensional Quantum Many-Body Systems” Phys. Rev. Lett. 93, 040502 (2004).

[60] Williams and Seeger “Using the Nyström Method to Speed Up Kernel Machines” Advances in Neural Information Processing Systems 13 682-688 (2001).

[61] Williams, Rasmussen, Schwaighofer, and Tresp, “Observations on the Nyström Method for Gaussian Process Prediction” report (2002).

[62] Woodruff “Sketching as a tool for numerical linear algebra” Foundations and Trends® 10, 1-157 (2014).

[63] Zhang and Kwok “Clustered Nyström method for large scale manifold learning and dimension reduction” IEEE Transactions on Neural Networks 21, 1576-1587 (2010).

[64] Zhang, Tsang, and Kwok, “Improved Nyström Low-Rank Approximation and Error Analysis” Proceedings of the 25th International Conference on Machine Learning 1232-1239 (2008).

Cited by

[1] Ewin Tang, “Quantum-inspired classical algorithms for principal component analysis and supervised clustering”, arXiv:1811.00414.

[2] Juan A. Acebron, “A Monte Carlo method for computing the action of a matrix exponential on a vector”, arXiv:1904.12759.

[3] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang, “Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning”, arXiv:1910.06151.

The above citations are from SAO/NASA ADS (last updated successfully 2020-02-20 15:40:36). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2020-02-20 15:40:34: Could not fetch cited-by data for 10.22331/q-2020-02-20-234 from Crossref. This is normal if the DOI was registered recently.


Continue Reading


Extension of the Alberti-Ulhmann criterion beyond qubit dichotomies



Michele Dall’Arno1,2, Francesco Buscemi3, and Valerio Scarani1,4

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
2Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
3Graduate School of Informatics, Nagoya University, Chikusa-ku, 464-8601 Nagoya, Japan
4Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The Alberti-Ulhmann criterion states that any given qubit dichotomy can be transformed into any other given qubit dichotomy by a quantum channel if and only if the testing region of the former dichotomy includes the testing region of the latter dichotomy. Here, we generalize the Alberti-Ulhmann criterion to the case of arbitrary number of qubit or qutrit states. We also derive an analogous result for the case of qubit or qutrit measurements with arbitrary number of elements. We demonstrate the possibility of applying our criterion in a semi-device independent way.

As soon as entanglement was recognised as a resource, theorists started studying the interconversions properties of this resource. The most famous such question is: given N copies of a state rho, how many copies N’ of the state rho’ can one obtain with local operations and classical communication? This question led to the definition of entanglement of formation (rho is the maximally entangled state), of distillation (rho’ is the maximally entangled state), to the discovery of inequivalent entanglement classes for multipartite systems… The amount of literature on this question is enormous.

Very little however is known about a different problem, the one we consider here. The question is whether a pair of states (rho,sigma) can be converted into another pair of states (rho’,sigma’). This question does not need to refer to entanglement: in fact, here we don’t consider composite systems, and consequently we don’t restrict the possible operations. A very simple answer would be the one that holds for classical probability distributions: Pair 1 can be converted into Pair 2, if all the statistics that can be observed with Pair 2 can also be observed with Pair 1. This conveys the idea that Pair 1 can do all that Pair 2 can do, and possibly more. This answer holds for two states of qubits (Alberti and Uhlmann, 1980), but counter-examples are known already when Pair 1 comprises qutrit states. In this paper, we prove that the classical-like characterisation still holds when Pair 1 is generalized to any family of qubit states, as soon as they can all be expressed with real coefficients, and Pair 2 is generalized to any family of qubit or, under certain hypotheses, qutrit, states. We also exploit a duality between states and measurements to present a similar characterisation of measurement devices.

► BibTeX data

► References

[1] J. M. Renes, Relative submajorization and its use in quantum resource theories, J. Math. Phys. 57, 122202 (2016).

[2] D. Blackwell, Equivalent Comparisons of Experiments, Ann. Math. Statist. 24, 265 (1953).

[3] E. N. Torgersen, Comparison of statistical experiments, (Cambridge University Press, 1991).

[4] E. N. Torgersen, Comparison of experiments when the parameter space is finite, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 16, 219 (1970).

[5] K. Matsumoto, An example of a quantum statistical model which cannot be mapped to a less informative one by any trace preserving positive map, arXiv:1409.5658.

[6] K. Matsumoto, On the condition of conversion of classical probability distribution families into quantum families, arXiv:1412.3680 (2014).

[7] F. Buscemi and G. Gour, Quantum Relative Lorenz Curves, Phys. Rev. A 95, 012110 (2017).

[8] D. Reeb, M. J. Kastoryano, and M. M. Wolf, Hilbert’s projective metric in quantum information theory, J. Math. Phys. 52, 082201 (2011).

[9] A. Jenčová, Comparison of Quantum Binary Experiments, Reports on Mathematical Physics 70, 237 (2012).

[10] F. Buscemi, Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency, Communications in Mathematical Physics 310, 625 (2012).

[11] K. Matsumoto, A quantum version of randomization criterion, arXiv: 1012.2650 (2010).

[12] A. Jenčová, Comparison of quantum channels and statistical experiments, in 2016 IEEE International Symposium on Information Theory (ISIT), 2249 (2016).

[13] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications (Springer, 2011).

[14] K. Matsumoto, Reverse Test and Characterization of Quantum Relative Entropy, arXiv:1010.1030.

[15] F. Buscemi, D. Sutter, and M. Tomamichel, An information-theoretic treatment of quantum dichotomies, arXiv:1907.08539.

[16] X. Wang and M. M. Wilde, “Resource theory of asymmetric distinguishability”, arXiv:1905.11629 (2019).

[17] P. M. Alberti and A. Uhlmann, A problem relating to positive linear maps on matrix algebras, Reports on Mathematical Physics 18, 163 (1980).

[18] M. Dall’Arno, S. Brandsen, F. Buscemi, and V. Vedral, Device-independent tests of quantum measurements, Phys. Rev. Lett. 118, 250501 (2017).

[19] M. Dall’Arno, Device-independent tests of quantum states, Phys. Rev. A 99, 052353 (2019).

[20] M. Dall’Arno, F. Buscemi, A. Bisio, and A. Tosini, Data-driven inference, reconstruction, and observational completeness of quantum devices, arXiv:1812.08470.

[21] F. Buscemi and M. Dall’Arno, Data-driven Inference of Physical Devices: Theory and Implementation, New J. Phys. 21, 113029 (2019).

[22] M. Dall’Arno, A. Ho, F. Buscemi, and V. Scarani, Data-driven inference and observational completeness of quantum devices, arXiv:1905.04895.

[23] S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10, 165 (1976).

[24] M. M. Wilde, Quantum Information Theory, (Cambridge University Press, 2017).

[25] F. Buscemi, G. M. D’Ariano, M. Keyl, P. Perinotti, and R. Werner, Clean Positive Operator Valued Measures, J. Math. Phys. 46, 082109 (2005).

[26] F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays Presented to R. Courant on his 60th Birthday, 187–204, (Interscience Publishers, New York, 1948).

[27] K. M. Ball, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata. 41, 241 (1992).

[28] Michael J. Todd, Minimum-Volume Ellipsoids: Theory and Algorithms, (Cornell University, 2016).

[29] S. Boyd and L. Vandenberghe, Convex Optimization, (Cambridge University Press, 2004).

[30] G. M. D’Ariano, G. Chiribella, and P. Perinotti, Quantum Theory from First Principles: An Informational Approach (Cambridge University Press, 2017).

Cited by

Could not fetch Crossref cited-by data during last attempt 2020-02-20 14:17:42: Could not fetch cited-by data for 10.22331/q-2020-02-20-233 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2020-02-20 14:17:43).


Continue Reading


Control of anomalous diffusion of a Bose polaron



Christos Charalambous1, Miguel Ángel García-March1,2, Gorka Muñoz-Gil1, Przemysław Ryszard Grzybowski3, and Maciej Lewenstein1,4

1ICFO – Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 València, Spain
3Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
4ICREA, Lluis Companys 23, E-08010 Barcelona, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We study the diffusive behavior of a Bose polaron immersed in a coherently coupled two-component Bose-Einstein Condensate (BEC). We assume a uniform, one-dimensional BEC. Polaron superdiffuses if it couples in the same manner to both components, i.e. either attractively or repulsively to both of them. This is the same behavior as that of an impurity immersed in a single BEC. Conversely, the polaron exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively to the other. The anomalous diffusion exponent and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components, and with the coupling strength of the impurity to the BEC.

The phenomenon of anomalous diffusion, i.e. when a particle does not follow Brownian dynamics, attracts a growing interest in classical and quantum physics, appearing in a plethora of systems. In classical systems, there has been a considerable effort to elucidate the properties and conditions of anomalous diffusive behavior, with a large emphasis given to the question of how this anomalous diffusion could potentially be controlled.
In quantum systems, a paradigmatic instance of a highly controlled system is that of a Bose Einstein Condensate (BEC). Furthermore, it has already been shown that BEC with tunable interactions, are promising systems to study a number of diffusion related phenomena.

In this work, we study the diffusive behavior of an impurity immersed in a coherently coupled two-component BEC. We find that the impurity superdiffuses if it couples in the same manner to both components, i.e. either attractively or repulsively to both of them. This is the same behavior as that of an impurity immersed in a single BEC. However, the impurity exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively to the other. The anomalous diffusion exponent as well as the duration of the subdiffusive interval, appearing in this case, are shown to be controlled by the Rabi frequency of the coherent coupling between the two components, and by the coupling strength of the impurity to the BEC.

► BibTeX data

► References

[1] P. Hänggi and F. Marchesoni. Introduction: 100years of brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026101, 2005. 10.1063/​1.1895505. URL https:/​/​​10.1063/​1.1895505.

[2] I. M. Sokolov and J. Klafter. From diffusion to anomalous diffusion: A century after einstein’s brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026103, 2005. 10.1063/​1.1860472. URL https:/​/​​10.1063/​1.1860472.

[3] H. Scher and E.W. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12: 2455–2477, Sep 1975. 10.1103/​PhysRevB.12.2455. URL https:/​/​​doi/​10.1103/​PhysRevB.12.2455.

[4] A. Bunde and S. Havlin. Fractals in science. Springer-Verlag Berlin Heidelberg, 1994. 10.1007/​978-3-662-11777-4.

[5] M J Saxton. Lateral diffusion in an archipelago. single-particle diffusion. Biophys J, 64, 1993. 10.1016/​S0006-3495(93)81548-0. URL https:/​/​​pubmed/​8369407.

[6] M. J. Saxton. Single-particle tracking: the distribution of diffusion coefficients. Biophys J, 72, 1997. 10.1016/​S0006-3495(97)78820-9. URL https:/​/​​pubmed/​9083678.

[7] F. Leyvraz, J. Adler, A. Aharony, A. Bunde, A. Coniglio, D.C. Hong, H.E. Stanley, and D. Stauffer. The random normal superconductor mixture in one dimension. Journal of Physics A: Mathematical and General, 19 (17): 3683–3692, dec 1986. 10.1088/​0305-4470/​19/​17/​030. URL https:/​/​​10.1088.

[8] S. Hottovy, G. Volpe, and J. Wehr. Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the smoluchowski-kramers limit. Journal of Statistical Physics, 146 (4): 762–773, Feb 2012. ISSN 1572-9613. 10.1007/​s10955-012-0418-9. URL https:/​/​​10.1007/​s10955-012-0418-9.

[9] A.G. Cherstvy and R. Metzler. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys., 15: 20220–20235, 2013. 10.1039/​C3CP53056F. URL http:/​/​​10.1039/​C3CP53056F.

[10] A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New Journal of Physics, 15 (8): 083039, aug 2013. 10.1088/​1367-2630/​15/​8/​083039. URL https:/​/​​10.1088.

[11] A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Particle invasion, survival, and non-ergodicity in 2d diffusion processes with space-dependent diffusivity. Soft Matter, 10: 1591–1601, 2014. 10.1039/​C3SM52846D. URL http:/​/​​10.1039/​C3SM52846D.

[12] P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein, and G. J. Lapeyre. Nonergodic subdiffusion from brownian motion in an inhomogeneous medium. Phys. Rev. Lett., 112: 150603, Apr 2014. 10.1103/​PhysRevLett.112.150603. URL https:/​/​​doi/​10.1103/​PhysRevLett.112.150603.

[13] Carlo Manzo, Juan A. Torreno-Pina, Pietro Massignan, Gerald J. Lapeyre, Maciej Lewenstein, and Maria F. Garcia Parajo. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X, 5: 011021, Feb 2015. 10.1103/​PhysRevX.5.011021. URL https:/​/​​doi/​10.1103/​PhysRevX.5.011021.

[14] C. Charalambous, G. Muñoz Gil, A. Celi, M. F. Garcia-Parajo, M. Lewenstein, C. Manzo, and M. A. García-March. Nonergodic subdiffusion from transient interactions with heterogeneous partners. Phys. Rev. E, 95: 032403, Mar 2017. 10.1103/​PhysRevE.95.032403. URL https:/​/​​doi/​10.1103/​PhysRevE.95.032403.

[15] B. Min, T. Li, M. Rosenkranz, and W. Bao. Subdiffusive spreading of a bose-einstein condensate in random potentials. Phys. Rev. A, 86: 053612, Nov 2012. 10.1103/​PhysRevA.86.053612. URL https:/​/​​doi/​10.1103/​PhysRevA.86.053612.

[16] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio. Anderson localization of a non-interacting bose–einstein condensate. Nature, 453, 2008. 10.1038/​nature07071. URL https:/​/​​10.1038/​nature07071.

[17] F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Physics, 8, 2012. 10.1038/​nphys2256. URL https:/​/​​10.1038/​nphys2256.

[18] L. Sanchez-Palencia and M. Lewenstein. Disordered quantum gases under control. Nature Physics, 6, 2010. 10.1038/​nphys1507. URL https:/​/​​10.1038/​nphys1507.

[19] G. Modugno. Anderson localization in bose–einstein condensates. Reports on Progress in Physics, 73 (10): 102401, sep 2010. 10.1088/​0034-4885/​73/​10/​102401. URL https:/​/​​10.1088.

[20] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of anderson localization of matter waves in a controlled disorder. Nature, 453, 2008. 10.1038/​nature07000. URL https:/​/​​10.1038/​nature07000.

[21] B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio. Delocalization of a disordered bosonic system by repulsive interactions. Nature Physics, 6, 2010. 10.1038/​nphys1635. URL https:/​/​​10.1038/​nphys1635.

[22] E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, and G. Modugno. Observation of subdiffusion in a disordered interacting system. Phys. Rev. Lett., 106: 230403, Jun 2011. 10.1103/​PhysRevLett.106.230403. URL https:/​/​​doi/​10.1103/​PhysRevLett.106.230403.

[23] Stefan Donsa, Harald Hofstätter, Othmar Koch, Joachim Burgdörfer, and Iva Březinová. Long-time expansion of a bose-einstein condensate: Observability of anderson localization. Phys. Rev. A, 96: 043630, Oct 2017. 10.1103/​PhysRevA.96.043630. URL https:/​/​​doi/​10.1103/​PhysRevA.96.043630.

[24] D. L. Shepelyansky. Delocalization of quantum chaos by weak nonlinearity. Phys. Rev. Lett., 70: 1787–1790, Mar 1993. 10.1103/​PhysRevLett.70.1787. URL https:/​/​​doi/​10.1103/​PhysRevLett.70.1787.

[25] G. Kopidakis, S. Komineas, S. Flach, and S. Aubry. Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett., 100: 084103, Feb 2008. 10.1103/​PhysRevLett.100.084103. URL https:/​/​​doi/​10.1103/​PhysRevLett.100.084103.

[26] A. S. Pikovsky and D. L. Shepelyansky. Destruction of anderson localization by a weak nonlinearity. Phys. Rev. Lett., 100: 094101, Mar 2008. 10.1103/​PhysRevLett.100.094101. URL https:/​/​​doi/​10.1103/​PhysRevLett.100.094101.

[27] S. Flach, D. O. Krimer, and Ch. Skokos. Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett., 102: 024101, Jan 2009. 10.1103/​PhysRevLett.102.024101. URL https:/​/​​doi/​10.1103/​PhysRevLett.102.024101.

[28] Ch. Skokos, D. O. Krimer, S. Komineas, and S. Flach. Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E, 79: 056211, May 2009. 10.1103/​PhysRevE.79.056211. URL https:/​/​​doi/​10.1103/​PhysRevE.79.056211.

[29] Hagar Veksler, Yevgeny Krivolapov, and Shmuel Fishman. Spreading for the generalized nonlinear schrödinger equation with disorder. Phys. Rev. E, 80: 037201, Sep 2009. 10.1103/​PhysRevE.80.037201. URL https:/​/​​doi/​10.1103/​PhysRevE.80.037201.

[30] M. Mulansky and A. Pikovsky. Spreading in disordered lattices with different nonlinearities. EPL (Europhysics Letters), 90 (1): 10015, apr 2010. 10.1209/​0295-5075/​90/​10015. URL https:/​/​​10.1209.

[31] T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer, Ch. Skokos, and S. Flach. The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL (Europhysics Letters), 91 (3): 30001, aug 2010. 10.1209/​0295-5075/​91/​30001. URL https:/​/​​10.1209.

[32] A. Iomin. Subdiffusion in the nonlinear schrödinger equation with disorder. Phys. Rev. E, 81: 017601, Jan 2010. 10.1103/​PhysRevE.81.017601. URL https:/​/​​doi/​10.1103/​PhysRevE.81.017601.

[33] M. Larcher, F. Dalfovo, and M. Modugno. Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasiperiodic potentials. Phys. Rev. A, 80: 053606, Nov 2009. 10.1103/​PhysRevA.80.053606. URL https:/​/​​doi/​10.1103/​PhysRevA.80.053606.

[34] L.M. Aycock, H.M. Hurst, D.K. Efimkin, D. Genkina, H.-I. Lu, V.M. Galitski, and I. B. Spielman. Brownian motion of solitons in a bose–einstein condensate. Proceedings of the National Academy of Sciences, 114 (10): 2503–2508, 2017. ISSN 0027-8424. 10.1073/​pnas.1615004114. URL https:/​/​​content/​114/​10/​2503.

[35] A. Lampo, S.H. Lim, M.A. García-March, and M. Lewenstein. Bose polaron as an instance of quantum Brownian motion. Quantum, 1: 30, September 2017. ISSN 2521-327X. 10.22331/​q-2017-09-27-30. URL https:/​/​​10.22331/​q-2017-09-27-30.

[36] A. Lampo, C. Charalambous, M.A. García-March, and M. Lewenstein. Non-markovian polaron dynamics in a trapped bose-einstein condensate. Phys. Rev. A, 98: 063630, Dec 2018. 10.1103/​PhysRevA.98.063630. URL https:/​/​​doi/​10.1103/​PhysRevA.98.063630.

[37] C. Charalambous, M.A. Garcia-March, A. Lampo, M. Mehboudi, and M. Lewenstein. Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Phys., 6: 10, 2019. 10.21468/​SciPostPhys.6.1.010. URL https:/​/​​10.21468/​SciPostPhys.6.1.010.

[38] D.K. Efimkin, J. Hofmann, and V. Galitski. Non-markovian quantum friction of bright solitons in superfluids. Phys. Rev. Lett., 116: 225301, May 2016. 10.1103/​PhysRevLett.116.225301. URL https:/​/​​doi/​10.1103/​PhysRevLett.116.225301.

[39] H.M. Hurst, D.K. Efimkin, I. B. Spielman, and V. Galitski. Kinetic theory of dark solitons with tunable friction. Phys. Rev. A, 95: 053604, May 2017. 10.1103/​PhysRevA.95.053604. URL https:/​/​​doi/​10.1103/​PhysRevA.95.053604.

[40] A. Cem Keser and V. Galitski. Analogue stochastic gravity in strongly-interacting bose–einstein condensates. Annals of Physics, 395: 84 – 111, 2018. ISSN 0003-4916. https:/​/​​10.1016/​j.aop.2018.05.009. URL http:/​/​​science/​article/​pii/​S0003491618301453.

[41] Julius Bonart and Leticia F. Cugliandolo. From nonequilibrium quantum brownian motion to impurity dynamics in one-dimensional quantum liquids. Phys. Rev. A, 86: 023636, Aug 2012. 10.1103/​PhysRevA.86.023636. URL https:/​/​​doi/​10.1103/​PhysRevA.86.023636.

[42] X.-D. Bai and J.-K. Xue. Subdiffusion of dipolar gas in one-dimensional quasiperiodic potentials. Chinese Physics Letters, 32 (1): 010302, jan 2015. 10.1088/​0256-307x/​32/​1/​010302. URL https:/​/​​10.1088.

[43] K.-T. Xi, J. Li, and D.-N. Shi. Localization of a two-component bose–einstein condensate in a two-dimensional bichromatic optical lattice. Physica B: Condensed Matter, 436: 149 – 156, 2014. ISSN 0921-4526. https:/​/​​10.1016/​j.physb.2013.12.010. URL http:/​/​​science/​article/​pii/​S0921452613007837.

[44] Y. Ashida, R. Schmidt, L. Tarruell, and E. Demler. Many-body interferometry of magnetic polaron dynamics. Phys. Rev. B, 97: 060302, Feb 2018. 10.1103/​PhysRevB.97.060302. URL https:/​/​​doi/​10.1103/​PhysRevB.97.060302.

[45] A.J. Leggett. Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73: 307–356, Apr 2001. 10.1103/​RevModPhys.73.307. URL https:/​/​​doi/​10.1103/​RevModPhys.73.307.

[46] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75: 3969–3973, Nov 1995. 10.1103/​PhysRevLett.75.3969. URL https:/​/​​doi/​10.1103/​PhysRevLett.75.3969.

[47] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping bose-einstein condensates by sympathetic cooling. Phys. Rev. Lett., 78: 586–589, Jan 1997. 10.1103/​PhysRevLett.78.586. URL https:/​/​​doi/​10.1103/​PhysRevLett.78.586.

[48] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle. Optical confinement of a bose-einstein condensate. Phys. Rev. Lett., 80: 2027–2030, Mar 1998. 10.1103/​PhysRevLett.80.2027. URL https:/​/​​doi/​10.1103/​PhysRevLett.80.2027.

[49] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle. Observation of metastable states in spinor bose-einstein condensates. Phys. Rev. Lett., 82: 2228–2231, Mar 1999. 10.1103/​PhysRevLett.82.2228. URL https:/​/​​doi/​10.1103/​PhysRevLett.82.2228.

[50] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle. Spin domains in ground-state bose–einstein condensates. Nature, 396: 345–348, 1998. 10.1038/​24567. URL https:/​/​​10.1038/​24567.

[51] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari. Dynamical response of a bose-einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett., 81: 243–247, Jul 1998. 10.1103/​PhysRevLett.81.243. URL https:/​/​​doi/​10.1103/​PhysRevLett.81.243.

[52] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett., 85: 3745–3749, Oct 2000. 10.1103/​PhysRevLett.85.3745. URL https:/​/​​doi/​10.1103/​PhysRevLett.85.3745.

[53] P. Tommasini, E. J. V. de Passos, A. F. R. de Toledo Piza, M. S. Hussein, and E. Timmermans. Bogoliubov theory for mutually coherent condensates. Phys. Rev. A, 67: 023606, Feb 2003. 10.1103/​PhysRevA.67.023606. URL https:/​/​​doi/​10.1103/​PhysRevA.67.023606.

[54] S. Lellouch, T.-L. Dao, T. Koffel, and L. Sanchez-Palencia. Two-component bose gases with one-body and two-body couplings. Phys. Rev. A, 88: 063646, Dec 2013. 10.1103/​PhysRevA.88.063646. URL https:/​/​​doi/​10.1103/​PhysRevA.88.063646.

[55] M. Abad and A. Recati. A study of coherently coupled two-component bose-einstein condensates. The European Physical Journal D, 67 (7): 148, Jul 2013. ISSN 1434-6079. 10.1140/​epjd/​e2013-40053-2. URL https:/​/​​10.1140/​epjd/​e2013-40053-2.

[56] G.-S. Paraoanu, S. Kohler, F. Sols, and A.J. Leggett. The josephson plasmon as a bogoliubov quasiparticle. Journal of Physics B: Atomic, Molecular and Optical Physics, 34 (23): 4689–4696, nov 2001. 10.1088/​0953-4075/​34/​23/​313. URL https:/​/​​10.1088.

[57] A. Recati and F. Piazza. Breaking of goldstone modes in a two-component bose-einstein condensate. Phys. Rev. B, 99: 064505, Feb 2019. 10.1103/​PhysRevB.99.064505. URL https:/​/​​doi/​10.1103/​PhysRevB.99.064505.

[58] E. Nicklas. A new tool for miscibility control: Linear coupling. 01 2013.

[59] S. John and T. Quang. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A, 50: 1764–1769, Aug 1994. 10.1103/​PhysRevA.50.1764. URL https:/​/​​doi/​10.1103/​PhysRevA.50.1764.

[60] H.-T. Tan, W.-M. Zhang, and G.-x. Li. Entangling two distant nanocavities via a waveguide. Phys. Rev. A, 83: 062310, Jun 2011. 10.1103/​PhysRevA.83.062310. URL https:/​/​​doi/​10.1103/​PhysRevA.83.062310.

[61] J. Prior, I. de Vega, A.W. Chin, S.F. Huelga, and M.B. Plenio. Quantum dynamics in photonic crystals. Phys. Rev. A, 87: 013428, Jan 2013. 10.1103/​PhysRevA.87.013428. URL https:/​/​​doi/​10.1103/​PhysRevA.87.013428.

[62] A.G. Kofman, G. Kurizki, and B. Sherman. Spontaneous and induced atomic decay in photonic band structures. Journal of Modern Optics, 41 (2): 353–384, 1994. 10.1080/​09500349414550381. URL https:/​/​​10.1080/​09500349414550381.

[63] V. P Bykov. Spontaneous emission in a periodic structure. Journal of Experimental and Theoretical Physics, 35: 269, 01 1972.

[64] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58: 2059–2062, May 1987. 10.1103/​PhysRevLett.58.2059. URL https:/​/​​doi/​10.1103/​PhysRevLett.58.2059.

[65] P. Lambropoulos, G.M. Nikolopoulos, T.R. Nielsen, and S. Bay. Fundamental quantum optics in structured reservoirs. Reports on Progress in Physics, 63 (4): 455–503, mar 2000. 10.1088/​0034-4885/​63/​4/​201. URL https:/​/​​10.1088.

[66] M. Woldeyohannes and S. John. Coherent control of spontaneous emission near a photonic band edge. Journal of Optics B: Quantum and Semiclassical Optics, 5 (2): R43–R82, feb 2003. 10.1088/​1464-4266/​5/​2/​201. URL https:/​/​​10.1088.

[67] T. Quang, M. Woldeyohannes, S. John, and G.S. Agarwal. Coherent control of spontaneous emission near a photonic band edge: A single-atom optical memory device. Phys. Rev. Lett., 79: 5238–5241, Dec 1997. 10.1103/​PhysRevLett.79.5238. URL https:/​/​​doi/​10.1103/​PhysRevLett.79.5238.

[68] A. G. Kofman and G. Kurizki. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett., 93: 130406, Sep 2004. 10.1103/​PhysRevLett.93.130406. URL https:/​/​​doi/​10.1103/​PhysRevLett.93.130406.

[69] H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, 2007. ISBN 9780199213900. URL https:/​/​​books?id=DkcJPwAACAAJ.

[70] A. Rivas, A. Douglas K. Plato, S.F. Huelga, and M.B. Plenio. Markovian master equations: a critical study. New Journal of Physics, 12 (11): 113032, nov 2010. 10.1088/​1367-2630/​12/​11/​113032. URL https:/​/​​10.1088.

[71] I. de Vega, D. Alonso, and P. Gaspard. Two-level system immersed in a photonic band-gap material: A non-markovian stochastic schrödinger-equation approach. Phys. Rev. A, 71: 023812, Feb 2005. 10.1103/​PhysRevA.71.023812. URL https:/​/​​doi/​10.1103/​PhysRevA.71.023812.

[72] I. de Vega, D. Porras, and I.J. Cirac. Matter-wave emission in optical lattices: Single particle and collective effects. Phys. Rev. Lett., 101: 260404, Dec 2008. 10.1103/​PhysRevLett.101.260404. URL https:/​/​​doi/​10.1103/​PhysRevLett.101.260404.

[73] R. Vasile, F. Galve, and R. Zambrini. Spectral origin of non-markovian open-system dynamics: A finite harmonic model without approximations. Phys. Rev. A, 89: 022109, Feb 2014. 10.1103/​PhysRevA.89.022109. URL https:/​/​​doi/​10.1103/​PhysRevA.89.022109.

[74] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori. General non-markovian dynamics of open quantum systems. Phys. Rev. Lett., 109: 170402, Oct 2012. 10.1103/​PhysRevLett.109.170402. URL https:/​/​​doi/​10.1103/​PhysRevLett.109.170402.

[75] F. Giraldi and F. Petruccione. Fractional relaxations in photonic crystals. Journal of Physics A: Mathematical and Theoretical, 47 (39): 395304, sep 2014. 10.1088/​1751-8113/​47/​39/​395304. URL https:/​/​​10.1088.

[76] M. Bruderer, A. Klein, S.R. Clark, and D. Jaksch. Polaron physics in optical lattices. Phys. Rev. A, 76: 011605, Jul 2007. 10.1103/​PhysRevA.76.011605. URL https:/​/​​doi/​10.1103/​PhysRevA.76.011605.

[77] S. Patrick Rath and R. Schmidt. Field-theoretical study of the bose polaron. Phys. Rev. A, 88: 053632, Nov 2013. 10.1103/​PhysRevA.88.053632. URL https:/​/​​doi/​10.1103/​PhysRevA.88.053632.

[78] R.S. Christensen, J. Levinsen, and G.M. Bruun. Quasiparticle properties of a mobile impurity in a bose-einstein condensate. Phys. Rev. Lett., 115: 160401, Oct 2015. 10.1103/​PhysRevLett.115.160401. URL https:/​/​​doi/​10.1103/​PhysRevLett.115.160401.

[79] Y.E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler. Quantum dynamics of ultracold bose polarons. Phys. Rev. Lett., 117: 113002, Sep 2016. 10.1103/​PhysRevLett.117.113002. URL https:/​/​​doi/​10.1103/​PhysRevLett.117.113002.

[80] Q. Wang and H. Zhan. On different numerical inverse laplace methods for solute transport problems. Advances in Water Resources, 75: 80 – 92, 2015. ISSN 0309-1708. https:/​/​​10.1016/​j.advwatres.2014.11.001. URL http:/​/​​science/​article/​pii/​S0309170814002152.

[81] P.-Y. Lo, H.-N. Xiong, and W.-M. Zhang. Breakdown of bose-einstein distribution in photonic crystals. Scientific Reports, 5, 2015. 10.1038/​srep09423. URL https:/​/​​10.1038/​srep09423.

[82] J. Spiechowicz, J. Łuczka, and P. Hänggi. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation. Scientific Reports, 6, 2016. 10.1038/​srep30948. URL https:/​/​​10.1038/​srep30948.

[83] C. Navarrete-Benlloch, I. de Vega, D. Porras, and J.I. Cirac. Simulating quantum-optical phenomena with cold atoms in optical lattices. New Journal of Physics, 13 (2): 023024, feb 2011. 10.1088/​1367-2630/​13/​2/​023024. URL https:/​/​​10.1088.

[84] M. Mehboudi, A. Lampo, C. Charalambous, L.A. Correa, M.Á. García-March, and M. Lewenstein. Using polarons for sub-nk quantum nondemolition thermometry in a bose-einstein condensate. Phys. Rev. Lett., 122: 030403, Jan 2019. 10.1103/​PhysRevLett.122.030403. URL https:/​/​​doi/​10.1103/​PhysRevLett.122.030403.

[85] D. S. Petrov. Quantum mechanical stabilization of a collapsing bose-bose mixture. Phys. Rev. Lett., 115: 155302, Oct 2015. 10.1103/​PhysRevLett.115.155302. URL https:/​/​​doi/​10.1103/​PhysRevLett.115.155302.

[86] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell. Quantum liquid droplets in a mixture of bose-einstein condensates. Science, 359 (6373): 301–304, 2018. ISSN 0036-8075. 10.1126/​science.aao5686. URL https:/​/​​content/​359/​6373/​301.

Cited by

Could not fetch Crossref cited-by data during last attempt 2020-02-20 13:31:46: Could not fetch cited-by data for 10.22331/q-2020-02-20-232 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2020-02-20 13:31:46).


Continue Reading