Zephyrnet-logo

Quantum Hall-effect van Weyl-fermionen in halfgeleidende tellureen van het n-type

Datum:

  • 1.

    Geim, AK & Novoselov, KS De opkomst van grafeen. nat. Mater. 6, 183â € "191 (2007).

    CAS  Artikel  Google Scholar 

  • 2.

    Novoselov, KS et al. Tweedimensionaal gas van massaloze Dirac-fermionen in grafeen. NATUUR 438, 197â € "200 (2005).

    CAS  Google Scholar 

  • 3.

    Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. NATUUR 438, 201â € "204 (2005).

    CAS  Google Scholar 

  • 4.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Fys. 90, 015001 (2018).

    CAS  Google Scholar 

  • 5.

    Hasan, M. Z., Xu, S. Y., Belopolski, I. & Huang, S. M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Materie Phys. 8, 289â € "309 (2017).

    CAS  Google Scholar 

  • 6.

    Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Lett. 114, 206401 (2015).

    Google Scholar 

  • 7.

    Nakayama, K. et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Fys. Rev. B 95, 125204 (2017).

    Google Scholar 

  • 8.

    Tsirkin, S. S., Puente, P. A. & Souza, I. Gyrotropic effects in trigonal tellurium studied from first principles. Fys. Rev. B 97, 035158 (2018).

    CAS  Google Scholar 

  • 9.

    Agapito, L. A., Kioussis, N., Goddard, W. A. & Ong, N. P. Novel family of chiral-based topological insulators: elemental tellurium under strain. Phys. Lett. 110, 176401 (2013).

    Google Scholar 

  • 10.

    Şahin, C., Rou, J., Ma, J. & Pesin, D. A. Pancharatnam-Berry phase and kinetic magnetoelectric effect in trigonal tellurium. Fys. Rev. B 97, 205206 (2018).

    Google Scholar 

  • 11.

    Chang, G. et al. Topological quantum properties of chiral crystals. nat. Mater. 17, 978 (2018).

    CAS  Google Scholar 

  • 12.

    Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. NATUUR 567, 496â € "499 (2019).

    CAS  Google Scholar 

  • 13.

    Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. NATUUR 567, 500â € "505 (2019).

    CAS  Google Scholar 

  • 14.

    Zhang, C. L. et al. Ultraquantum magnetoresistance in the Kramers–Weyl semimetal candidate β-Ag2zie. Fys. Rev. B 96, 1â € "10 (2017).

    Google Scholar 

  • 15.

    von Klitzing, K. & Landwehr, G. Surface quantum states in tellurium. Solid State Comm. 9, 2201â € "2205 (1971).

    Google Scholar 

  • 16.

    Silbermann, R. & Landwehr, G. Surface quantum oscillations in accumulation and inversion layers on tellurium. Solid State Comm. 16, 6â € "9 (1975).

    Google Scholar 

  • 17.

    von Klitzing, K. Magnetophonon oscillations in tellurium under hot carrier conditions. Solid State Comm. 15, 1721â € "1725 (1974).

    Google Scholar 

  • 18.

    Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. nat. Elektron. 1, 228â € "236 (2018).

    Google Scholar 

  • 19.

    Du, Y. et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Let. 17, 3965â € "3973 (2017).

    CAS  Google Scholar 

  • 20.

    Wu, W., Qiu, G., Wang, Y., Wang, R. & Ye, P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. ds. 47, 7203â € "7212 (2018).

    CAS  Google Scholar 

  • 21.

    Qiu, G. et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Let. 18, 5760â € "5767 (2018).

    CAS  Google Scholar 

  • 22.

    Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Lett. 95, 146801 (2005).

    CAS  Google Scholar 

  • 23.

    Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. nat. Nanotechnologie. 10, 608â € "613 (2015).

    CAS  Google Scholar 

  • 24.

    Li, L. et al. Quantum hall effect in black phosphorus two-dimensional electron system. nat. Nanotechnologie. 11, 593â € "597 (2016).

    CAS  Google Scholar 

  • 25.

    Yang, J. et al. Integer and fractional quantum Hall effect in ultra-high quality few-layer black phosphorus transistors. Nano Let. 18, 229â € "234 (2018).

    CAS  Google Scholar 

  • 26.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin Inse. nat. Nanotechnologie. 12, 223â € "227 (2017).

    CAS  Google Scholar 

  • 27.

    Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Lett. 116, 1â € "5 (2016).

    Google Scholar 

  • 28.

    Movva, HCP et al. Dichtheidsafhankelijke kwantum-Hall-toestanden en Zeeman-splitsing in monolaag en dubbellaags WSe2. Phys. Lett. 118, 247701 (2017).

    Google Scholar 

  • 29.

    Wu, Z. et al. Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nat. Commun. 7, 12955 (2016).

    CAS  Google Scholar 

  • 30.

    Pisoni, R. et al. Interacties en magnetotransport door spin-vallei gekoppelde Landau-niveaus in monolaag MoS2. Phys. Lett. 121, 247701 (2018).

    CAS  Google Scholar 

  • 31.

    Ren, X. et al. Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene. Nano Let. 19, 4738â € "4744 (2019).

    CAS  Google Scholar 

  • 32.

    Qiu, G. et al. High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In 2018 76th Device Research Conference (DRC) 1-2 (IEEE, 2018).

  • 33.

    Berweger, S. et al. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors. Nano Let. 19, 1289â € "1294 (2019).

    Google Scholar 

  • 34.

    Liu, H., Neal, A. T., Si, M., Du, Y. & Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Lett. 35, 795â € "797 (2014).

    Google Scholar 

  • 35.

    Perello, D. J., Chae, S. H., Song, S. & Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015).

    CAS  Google Scholar 

  • 36.

    Wang, C. H. et al. Unipolar n-type black phosphorus transistors with low work function contacts. Nano Let. 18, 2822â € "2827 (2018).

    CAS  Google Scholar 

  • 37.

    Coss, B. E. et al. Near band edge Schottky barrier height modulation using high-κ dielectric dipole tuning mechanism. toepassing Fys. Let. 95, 222105 (2009).

    Google Scholar 

  • 38.

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Lett. 45, 494â € "497 (1980).

    Google Scholar 

  • 39.

    Zhang, N. et al. Evidence for Weyl fermions in the elemental semiconductor tellurium. arXiv Prepr. arXiv1906.06071 (2019).

  • 40.

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2zie. Fys. Rev. B 82, 241306 (2010).

    Google Scholar 

  • 41.

    Ando, Y. Topological insulator materials. J. Fys. Soc. Jpn. 82, 102001 (2013).

    Google Scholar 

  • 42.

    Xiong, J. et al. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6Ω∙cm). Phys. E 44, 917â € "920 (2012).

    CAS  Google Scholar 

  • 43.

    Yu, W. et al. Quantum oscillations at integer and fractional Landau level indices in single-crystalline ZrTe5. Sci. Rep. 6, 35357 (2016).

    CAS  Google Scholar 

  • 44.

    Hu, J. et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP. Sci. Rep. 6, 18674 (2016).

    CAS  Google Scholar 

  • 45.

    Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional dirac semimetal Cd3As2. Fys. Rev. X 5, 031037 (2015).

    Google Scholar 

  • 46.

    Roth, L. Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Fys. ds. 145, 434 (1966).

    CAS  Google Scholar 

  • 47.

    Dhillon, J. S. & Shoenberg, D. The de Haas-van alphen effect III. Experiments at fields up to 32 KG. Philos. Trans. R. Soc. EEN 248, 1â € "21 (1955).

    Google Scholar 

  • 48.

    Alexandradinata, A., Wang, C., Duan, W. & Glazman, L. Revealing the topology of Fermi-surface wave functions from magnetic quantum oscillations. Fys. Rev. X 8, 11027 (2018).

    CAS  Google Scholar 

  • 49.

    Xu, S. et al. Odd-integer quantum hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Lett. 118, 067702 (2017).

    Google Scholar 

  • 50.

    Niu, C. et al. Gate-tunable Strong Spin-orbit Interaction in Two-dimensional Tellurium Probed by Weak-antilocalization. arXiv Prepr. arXiv1909.06659 (2019).

  • 51.

    Rotenberg, E. Topological insulators: The dirt on topology. nat. Fys. 7, 8â € "10 (2011).

    CAS  Google Scholar 

  • 52.

    Mallet, P. et al. Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy. Fys. Rev. B 86, 045444 (2012).

    Google Scholar 

  • 53.

    Shinno, H., Yoshizaki, R., Tanaka, S., Doi, T. & Kamimura, H. Conduction band structure of tellurium. J. Fys. Soc. Jpn. 35, 525â € "533 (1973).

    CAS  Google Scholar 

  • 54.

    Liu, Y., Wu, W. & Goddard, W. A. Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140, 550â € "553 (2018).

    CAS  Google Scholar 

  • 55.

    Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. & Schwartz, D. K. Langmuir-Blodgett films. Wetenschap 263, 1726â € "1733 (1994).

    CAS  Google Scholar 

  • Bron: https://www.nature.com/articles/s41565-020-0715-4

    spot_img

    Laatste intelligentie

    spot_img

    Chat met ons

    Hallo daar! Hoe kan ik u helpen?