Zephyrnet Logo

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology

Date:

Home > Press > New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology

Distinguished Professor Feng Ding at UNIST

CREDIT
Hong Beom Ahn

Abstract:
High-quality graphite has excellent mechanical strength, thermal stability, high flexibility and very high in-plane thermal and electric conductivities and, thus, is one of most important advanced materials for many applications, such as being used as the light thermal conductor of cell phones. For example, a specific type of graphite, Highly Ordered Pyrolytic Graphite (HOPG), is one of the mostly used lab. materials. These excellent properties originate from the layered structure of graphite, where the strong covalent binding between carbon atoms in a graphene layer contribute to the excellent mechanical properties, thermal and electric conductivities and the very weak interaction between graphene layers leads to the highly flexibility of graphite.

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology


Ulsan, Korea | Posted on November 4th, 2022

Although graphite has been discovered in Nature for more 1000 years and its artificial synthesis has been explored for more than 100 years, the quality of graphite samples, either Natural ones or synthesized ones, are far from ideal. Such as the size of the largest single crystalline graphite domains in graphitic materials are generally less than 1 mm, which is in sharp contrast to the size of many crystals, such as the size of quartz single crystal and silicon single crystals may reach meter scale. The very small size of single crystalline graphite is due to the weak interaction between graphite layers, where the flatness of a graphene layer is hard to be maintained during the growth process and, thus, a graphite can be easily breaks into a few single crystals with disordered grain boundaries (See Figure 1).

To solve the critical issue, Distinguished Professor of Ulsan National Institute of Science and Technology (UNIST) and his collaborators, Professor Kaihui Liu, Professor Enge Wang of Peking University, and others has proposed a strategy to synthesize single-crystalline graphite films orders of magnitude large, up to inch scale. In their approach, single crystalline Ni foils are used as a substrate and caron atoms are supplied from the back side of the Ni foils through an “isothermal dissolution-diffusion-precipitation process” (See Figure 2). Instead of using gas phase carton source, they choose solid carbon materials to feed the graphite growth. Such a new strategy allows of ~1 inch single crystalline graphite films of 35 μm thick, or more than 100,000 graphene layers, within a few days. The single crystalline graphite has the recorded thermal conductivity of ~2,880 Wm-1K-1, negligible impurity contents and smallest layer distances in compare with all available graphite samples.

“This success really on a few critical issues of the experimental design: (1) the successful synthesis of large size single crystalline Ni films serves as an ultra-flat substrate and thus the disorders in the synthesized graphite can be avoided; (2) the isothermal growth of 100,000 graphene layers over ~ 100 hours allows every graphene layer be synthesized under exact same chemical environment and temperature thus ensure the uniformity of the graphite quality; (3) continuous carbon feeding through the back side of the Ni foil allows the contiguous growth of graphene layers in a very large growth rate, ~ one layer per five seconds,” Professor Ding explained.

The findings of this research have been published in the October 2022 issue of Nature Nanotechnology. This study has been jointly participated by Professor Kaihui Liu and Professor Enge Wang from Peking University.

####

For more information, please click here

Contacts:
JooHyeon Heo
Ulsan National Institute of Science and Technology(UNIST)
Office: +82-52-217-1223

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Related Links

Journal Reference

Related News Press

2 Dimensional Materials


Plant fibers for sustainable devices: Research into thermal properties of cellulose nanofibers yields surprising results November 4th, 2022


Spin photonics to move forward with new anapole probe November 4th, 2022

News and information


Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022


Spin photonics to move forward with new anapole probe November 4th, 2022


Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

Graphene/ Graphite


Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022


Buckyballs on gold are less exotic than graphene July 22nd, 2022


A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022


OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Thin films


Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021


Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an ‘absolute top transfer’ September 10th, 2021


Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021


Thin is now in to turn terahertz polarization: Rice lab’s discovery of ‘magic angle’ builds on its ultrathin, highly aligned nanotube films May 20th, 2021

Possible Futures


Plant fibers for sustainable devices: Research into thermal properties of cellulose nanofibers yields surprising results November 4th, 2022


Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022


Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022


Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Discoveries


Spin photonics to move forward with new anapole probe November 4th, 2022


Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022


NYU Tandon researchers explore a more frictionless future: Elisa Riedo’s and her lab team’s discovery of a fundamental law of friction leads to new materials that can minimize energy loss November 4th, 2022


Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Announcements


Spin photonics to move forward with new anapole probe November 4th, 2022


Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022


NYU Tandon researchers explore a more frictionless future: Elisa Riedo’s and her lab team’s discovery of a fundamental law of friction leads to new materials that can minimize energy loss November 4th, 2022


Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Spin photonics to move forward with new anapole probe November 4th, 2022


Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022


NYU Tandon researchers explore a more frictionless future: Elisa Riedo’s and her lab team’s discovery of a fundamental law of friction leads to new materials that can minimize energy loss November 4th, 2022


Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

spot_img

Latest Intelligence

spot_img