Connect with us

Bioengineer

New radiology research shows promising results for focused ultrasound treatment of Alzheimer’s

Avatar

Published

on

IMAGE

Credit: Caylie Silveria/West Virginia University

West Virginia University scientists used MRI scans to show what happens when ultrasound waves target a specific area of Alzheimer’s patient’s brains. They concluded that this treatment may induce an immunological healing response, a potential breakthrough for a disease that accounts for up to 80% of all dementia cases.

Rashi Mehta, a researcher with the WVU School of Medicine and Rockefeller Neuroscience Institute, led the study that appears in the journal Radiology.

“Focused ultrasound is an innovative technique and new way of approaching brain diseases, including Alzheimer’s disease,” said Mehta, an associate professor in the Departments of Radiology, Neuroscience and Neuroradiology. “Novel techniques are needed for Alzheimer’s disease since traditional approaches have not proven effective.”

In 2018, WVU launched a first-of-its-kind clinical trial to explore the use of focused ultrasound to open the blood-brain barrier in early-stage Alzheimer’s patients.

“The blood-brain barrier has long presented a challenge in treating the most pressing neurological disorders,” said Ali Rezai, the executive chair of RNI and principal investigator of the clinical trial. “The ability to noninvasively and reversibly open the blood-brain barrier in deep brain areas, such as the hippocampus, offers a new potential in developing treatments for Alzheimer’s disease.”

The ultrasound targeted the hippocampus in particular because it plays a large role in learning and memory.

Mehta used MRI with contrast-enhancement dye to observe the changes that took place in the brains of three early-stage Alzheimer’s patients–ages 61, 72 and 73–who underwent the ultrasound treatment.

She observed that the dye moved along the course of draining veins following the procedure.

“This imaging pattern was unexpected and enhances our understanding of brain physiology,” she said. “The glymphatic system, which is a fluid-movement and waste-clearance system that’s unique to the brain, has been studied in animals, but there is controversy about whether this system truly exists in humans. The imaging pattern that we discuss in the paper offers evidence not only to support that the system does likely exist in humans but that focused ultrasound may modulate fluid movement patterns and immunological responses along this system.”

Mehta and her colleagues’ analysis of the MRI scans suggests that an immunological healing response may occur around the draining veins following the procedure.

Her research team included Rezai; RNI researchers Jeffrey Carpenter, Marc Haut, Manish Ranjan, Umer Najib, Paul Lockman, Peng Wang and Pierre-Francois D’haese; and Rupal Mehta from the Rush University Alzheimer’s Disease Center.

“This observation may be an important clue in understanding the physiological mechanism by which the focused ultrasound procedure modifies brain amyloid levels and might be used to treat patients with Alzheimer’s disease and other brain disorders,” she said.

Why are amyloid levels important? Unusually high amounts of this protein tend to clump together in the brains of Alzheimer’s patients, forming plaques between nerve cells and sabotaging their function. The ongoing clinical trial aims to assess whether focused ultrasound can reduce amyloid plaques in patients with Alzheimer’s disease.

This project did not involve any medications. The ultrasound itself was enough to elicit a probable immunological response. In the future, however, the treatment may make it easier to medicate the brain with more precision, even in people who don’t have Alzheimer’s disease.

“The blood brain barrier limits our ability to deliver drugs and therapeutic agents directly to the brain,” Mehta said. “Therefore, opening this barrier in patients would allow focal delivery of medications in select brain regions targeted by the procedure.”

The clinical trial–sponsored by INSIGHTEC, the manufacturer of the ultrasound device–continues.

As Mehta and her team enroll more participants, they plan to examine the treatment’s long-term effects. They want to know whether it is safe and effective for slowing–or even reversing–the progression of Alzheimer’s dementia.

So far, the results are promising. The treatment has not harmed any of the participants who have completed it.

“We are thankful to the patients who have volunteered for this trial,” Mehta said. “They are brave to undergo this procedure, which if proven effective may benefit patients with Alzheimer’s disease in the future.”

Alzheimer’s disease is the nation’s most common form of dementia, and it’s on the rise. The Alzheimer’s Association reports that 5.8 million Americans age 65 and older had Alzheimer’s dementia in 2020. By 2050, that number could rise to 13.8 million.

The focused ultrasound team at RNI is committed to improving the lives of patients with Alzheimer’s disease by pioneering advances using a truly integrated approach and the latest technologies.

###

Research reported in this publication was supported by the National Institute of General Medical Sciences, a division of the National Institutes of Health, under Award Number 5U54GM104942-04. This publication does not necessarily reflect the views of NIGMS or NIH.

Citation

Title: Blood-brain barrier opening with MRI-guided focused ultrasound elicits meningeal venous permeability in humans with early Alzheimer disease

DOI: https://doi.org/10.1148/radiol.2021200643

Link: https://pubs.rsna.org/doi/10.1148/radiol.2021200643

-WVU-

see/02/25/21

Media Contact
Jake Stump, Director of Research Communications
jake.stump@mail.wvu.edu

Original Source

https://wvutoday.wvu.edu/stories/2021/02/25/new-radiology-research-shows-promising-results-for-focused-ultrasound-treatment-of-alzheimer-s

Source: https://bioengineer.org/new-radiology-research-shows-promising-results-for-focused-ultrasound-treatment-of-alzheimers/

Bioengineer

USC Stem Cell study identifies molecular ‘switch’ that turns precursors into kidney cells

Avatar

Published

on

Kidney development is a balancing act between the self-renewal of stem and progenitor cells to maintain and expand their numbers, and the differentiation of these cells into more specialized cell types. In a new study in the journal eLife from Andy McMahon’s laboratory in the Department of Stem Cell Biology and Regenerative Medicine at the Keck School of Medicine of USC, former graduate student Alex Quiyu Guo and a team of scientists demonstrate the importance of a molecule called β-catenin in striking this balance.

β-catenin is a key driver at the end of a complex signaling cascade known as the Wnt pathway. Wnt signaling plays critical roles in the embryonic development of multiple organs including the kidneys. By partnering with other Wnt pathway molecules, β-catenin controls the activity of hundreds to thousands of genes within the cell.

The new study builds on the McMahon Lab’s previous discovery that Wnt/β-catenin can initiate progenitor cells to execute a lengthy and highly orchestrated program of forming structures in the kidney called nephrons. A healthy human kidney contains a million nephrons that balance body fluids and remove soluble waste products. Too few nephrons results in kidney disease.

Previous studies from the UT Southwestern Medical Center laboratory of Thomas Carroll, a former postdoctoral trainee in the McMahon Lab, suggested that Wnt/β-catenin signaling plays opposing roles in ensuring the proper number of nephrons: promoting progenitor maintenance and self-renewal, and stimulating progenitor cell differentiation.

“It sounded like Wnt/β-catenin is doing two things–both maintenance and differentiation–that seem to be opposite operations,” said Guo. “Therefore, the hypothesis was that different levels of Wnt/β-catenin can dictate different fates of the nephron progenitors: when it’s low, it works on maintenance; when it’s high, it directs differentiation.”

In 2015, it became more possible to test this hypothesis when Leif Oxburgh, a scientist at the Rogosin Institute in New York and a co-author of the eLife study, developed a system for growing large numbers of nephron progenitor cells, or NPCs, in a Petri dish.

Relying on this game-changing new system, Guo and his collaborators grew NPCs, added different levels of a chemical that activates β-catenin, and saw their hypothesis play out in the Petri dishes.

They observed that high levels of β-catenin triggered a “switch” in part of the Wnt pathway that relies on another family of transcription factors known as TCF/LEF. There are two types of TCF/LEF transcription factors: one type inhibits genes related to differentiation, and the other activates these genes. In response to high levels of β-catenin, the “activating” members of TCF/LEF switched places with the “inhibiting” members, effectively taking charge. This “switch” triggered NPCs to differentiate into more specialized types of kidney cells.

When they looked at low levels of β-catenin, they saw NPCs self-renewing and maintaining their populations, as expected. However, they were surprised to learn that β-catenin was not engaged with any of the known genes related to self-renewal and maintenance.

“β-catenin does something,” said Guo. “That is for sure. But how it does it is kind of mysterious right now.”

After publishing these results in eLife, Guo earned his PhD from USC, and began his postdoctoral training at UCLA. Helena Bugacov, a current PhD student in the McMahon Lab and a co-author of the eLife study, is now taking the lead in continuing the project–which has implications far beyond the kidney field, due to the broad role of Wnt throughout the body.

“Understanding how Wnt regulates these two very distinct cell outcomes of self-renewal and differentiation, which is very important for kidney development, is also important for understanding the development of other organs and adult stem cells, as Wnt signaling plays important roles in almost all developmental systems,” said Bugacov. “There is also a lot of attention from cancer researchers, as this process can go awry in cancer. Many therapeutics are trying to target this process.”

She added, “The more we know about things, the better we can inform work on developing human kidney organoid cultures, which can be more readily used to understand problems in human health, regeneration and development.”

###

Additional co-authors of the eLife study include: Albert Kim, Andrew Ransick, Xi Chen, and Nils Lindstrom from USC; Aaron Brown from the Maine Medical Center Research Institute; and Bin Li and Bing Ren from the University of California, San Diego. The research was supported by federal funding from the National Institute of Diabetes and Digestive and Kidney Diseases (grant number R01 DK054364).

https://stemcell.keck.usc.edu/usc-stem-cell-study-identifies-molecular-switch-that-turns-precursors-into-kidney-cells/

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://bioengineer.org/usc-stem-cell-study-identifies-molecular-switch-that-turns-precursors-into-kidney-cells/

Continue Reading

Bioengineer

Evidence of Antarctic glacier’s tipping point confirmed for first time

Avatar

Published

on

Researchers have confirmed for the first time that Pine Island Glacier in West Antarctica could cross tipping points, leading to a rapid and irreversible retreat which would have significant consequences for global sea level

Researchers have confirmed for the first time that Pine Island Glacier in West Antarctica could cross tipping points, leading to a rapid and irreversible retreat which would have significant consequences for global sea level.

Pine Island Glacier is a region of fast-flowing ice draining an area of West Antarctica approximately two thirds the size of the UK. The glacier is a particular cause for concern as it is losing more ice than any other glacier in Antarctica.

Currently, Pine Island Glacier together with its neighbouring Thwaites glacier are responsible for about 10% of the ongoing increase in global sea level.

Scientists have argued for some time that this region of Antarctica could reach a tipping point and undergo an irreversible retreat from which it could not recover. Such a retreat, once started, could lead to the collapse of the entire West Antarctic Ice Sheet, which contains enough ice to raise global sea level by over three metres.

While the general possibility of such a tipping point within ice sheets has been raised before, showing that Pine Island Glacier has the potential to enter unstable retreat is a very different question.

Now, researchers from Northumbria University have shown, for the first time, that this is indeed the case.

Their findings are published in leading journal, The Cryosphere.

Using a state-of-the-art ice flow model developed by Northumbria’s glaciology research group, the team have developed methods that allow tipping points within ice sheets to be identified.

For Pine Island Glacier, their study shows that the glacier has at least three distinct tipping points. The third and final event, triggered by ocean temperatures increasing by 1.2C, leads to an irreversible retreat of the entire glacier.

The researchers say that long-term warming and shoaling trends in Circumpolar Deep Water, in combination with changing wind patterns in the Amundsen Sea, could expose Pine Island Glacier’s ice shelf to warmer waters for longer periods of time, making temperature changes of this magnitude increasingly likely.

The lead author of the study, Dr Sebastian Rosier, is a Vice-Chancellor’s Research Fellow in Northumbria’s Department of Geography and Environmental Sciences. He specialises in the modelling processes controlling ice flow in Antarctica with the goal of understanding how the continent will contribute to future sea level rise.

Dr Rosier is a member of the University’s glaciology research group, led by Professor Hilmar Gudmundsson, which is currently working on a major £4million study to investigate if climate change will drive the Antarctic Ice Sheet towards a tipping point.

Dr Rosier explained: “The potential for this region to cross a tipping point has been raised in the past, but our study is the first to confirm that Pine Island Glacier does indeed cross these critical thresholds.

“Many different computer simulations around the world are attempting to quantify how a changing climate could affect the West Antarctic Ice Sheet but identifying whether a period of retreat in these models is a tipping point is challenging.

“However, it is a crucial question and the methodology we use in this new study makes it much easier to identify potential future tipping points.”

Hilmar Gudmundsson, Professor of Glaciology and Extreme Environments worked with Dr Rosier on the study. He added: “The possibility of Pine Island Glacier entering an unstable retreat has been raised before but this is the first time that this possibility is rigorously established and quantified.

“This is a major forward step in our understanding of the dynamics of this area and I’m thrilled that we have now been able to finally provide firm answers to this important question.

“But the findings of this study also concern me. Should the glacier enter unstable irreversible retreat, the impact on sea level could be measured in metres, and as this study shows, once the retreat starts it might be impossible to halt it.”

###

The paper, The tipping points and early warning indicators for Pine island Glacier, West Antarctica, is now available to view in The Cryosphere.

Northumbria is fast becoming the UK’s leading university for research into Antarctic and extreme environments.

As well as the £4m tipping points study, known as TiPPACCs, Northumbria is also the only UK university to play a part in two projects in the £20m International Thwaites Glacier Collaboration – the largest joint project undertaken by the UK and USA in Antarctica for more than 70 years – where Northumbria is leading the PROPHET and GHC projects. This particular study was funded through both TiPPACCs and PROPHET.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://bioengineer.org/evidence-of-antarctic-glaciers-tipping-point-confirmed-for-first-time/

Continue Reading

Bioengineer

Diversity can prevent failures in large power grids

Avatar

Published

on

Integrated power grids offer benefits, but also pose challenges best addressed by leveraging differences

The recent power outages in Texas brought attention to its power grid being separated from the rest of the country. While it is not immediately clear whether integration with other parts of the national grid would have completely eliminated the need for rolling outages, the state’s inability to import significant amounts of electricity was decisive in the blackout.

A larger power grid has perks, but also has perils that researchers at Northwestern University are hoping to address to expedite integration and improvements to the system.

An obvious challenge in larger grids is that failures can propagate further — in the case of Texas, across state lines. Another is that all power generators need to be kept synchronized to a common frequency in order to transmit energy. The U.S. is served by three “separate” grids: The Eastern interconnection, the Western interconnection and the Texas interconnection, interlinked only by direct-current power lines. Any persistent deviation in frequencies within a region can lead to an outage.

As a result, researchers are searching for ways to stabilize the grid by looking for methods to mitigate deviations in the power generators’ frequencies.

The new Northwestern research shows that counter to assumptions held by some, there are stability benefits to heterogeneity in the power grid. Examining several power grids across the U.S. and Europe, a team led by Northwestern physicist Adilson Motter recently reported that generators operating on different frequencies return to their normal state more quickly when they are damped by “breakers” at different rates than generators around them.

The paper was published March 5 in the journal Nature Communications.

Motter is the Charles E. and Emma H. Morrison Professor in the department of physics and astronomy in the Weinberg College of Arts and Sciences. His research focuses on nonlinear phenomena in complex systems and networks.

Motter compares power grids to a choir: “It’s a little bit like a choir without a conductor. The generators have to listen to others and speak in sync. They react and respond to each other’s frequencies.”

Listen to an out-of-whack frequency, and the result can be a failure. Given the interconnected makeup of the system, a failure can propagate across the network. Historically, these malfunctions have been prevented by using active controllers. However, failures are often caused precisely by control and equipment errors. This points to a need to build additional stability within the design of the system. To achieve that, the team looked into leveraging the natural heterogeneities of the grid.

When the frequencies of the power generators are moved away from the synchronous state, they can swing around for a long time and even become more erratic. To mitigate these fluctuations, they came up with something akin to a door mechanism used to close a door the fastest, but without slamming.

“Mathematically, the problem of damping frequency deviations in a power generator is analogous to the problem of optimally damping a door to get it to close the fastest, which has a known solution in the case of a single door,” Motter said. “But it’s not a single door in this analogy. It’s a network of many doors that are coupled with each other, if you can imagine the doors as power generators.”

When creating an “optimal damping” effect, they discovered that rather than making each damper identical, damping the power generators in a way that is suitably different from each other can further optimize their ability to synchronize to the same frequency as quickly as possible. That is, suitably heterogenous damping across the network can lead to improved stability in the power grids studied by the team.

This discovery could have implications for future grid design as developers work to optimize technology and in considerations to further integrate now separated networks.

###

The paper is titled “Asymmetry underlies stability in power grids.” Additional co-authors include former postdoctoral researcher Ferenc Molnar and research professor Takashi Nishikawa.

The study was supported by Northwestern University’s Finite Earth Initiative (supported by Leslie and Mac McQuown) and ARPA-E Award No. DE-AR0000702 and also benefited from logistical support from the Northwestern Institute for Sustainability and Energy.

https://news.northwestern.edu/stories/2021/04/diversity-can-prevent-failures-in-large-power-grids/

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://bioengineer.org/diversity-can-prevent-failures-in-large-power-grids/

Continue Reading

Bioengineer

How Fortnite and Zelda can up your surgical game (no joke!)

Avatar

Published

on

Scalpel? Check. Gaming console? Check. Study finds video games can be a new tool on surgical tray for medical students

Video games offer students obvious respite from the stresses of studies and, now, a study from a University of Ottawa medical student has found they could benefit surgical skills training.

Arnav Gupta carries a heavy course load as a third-year student in the Faculty of Medicine, so winding down with a game of Legend of Zelda always provides relief from the rigorous of study. But Zelda may be helping improve his surgical education, too, as Gupta and a team of researchers from the University of Toronto found in a paper they recently published in the medical journal Surgery.

“Given the limited availability of simulators and the high accessibility of video games, medical students interested in surgical specialties should know that video games may be a valuable adjunct training for enhancing their medical education, especially in surgical specialties where it can be critical,” says Gupta, whose findings were deciphered from a systematic review of 16 studies involving 575 participants.

“Particularly, in robotic surgery, being a video gamer was associated with improvements in time to completion, economy of motion, and overall performance. In laparoscopic surgery, video games-based training was associated with improvement in duration on certain tasks, economy of motion, accuracy, and overall performance,” explains Gupta, who has been a gamer since age 8.

This study builds on past reviews and is the first to focus on a specific medical student population where this style of training could be feasibly implemented. Their timely study found some of the most beneficial games for students of robotic surgery and laparoscopy were: Super Monkey Ball, Half Life, Rocket League and Underground. Underground is purposely designed to assist medical students with their robotic surgery training via a video game console.

“While video games can never replace the value of first-hand experience, they do have merit as an adjunctive tool, especially when attempting to replicate important movements to surgery. For example, first-person shooting games require you to translate three dimensional motions onto a two-dimensional screen, which is like the concept of laparoscopic surgery,” says Gupta, whose studies are focused on surgery in ophthalmology, which makes games like Resident Evil 4 or Trauma Center: New Blood fitted for his own ambitions.

“I’m not joking when I say that games such as Fortnite have the potential to enhance those necessary movements, providing stronger motivational components and in a low stakes environment.”

Reports suggest 55 percent of university students are gamers and enjoy proficiency with video consoles. Yet, many medical students don’t admit to owning and using a gaming console.

“I think there definitely is some ambivalence towards video games in medicine,” says Gupta, who is also a fan of Witcher 3. “Given how accessible games have become and how video game technology is advancing, video games definitely are an easy go-to for the students who do love them in some capacity. The hope is that maybe this study can inspire someone to take advantage of video games’ unique capabilities, reduce the general ambivalence towards it, and develop some fun ways to let students engage with surgical education.”

###

https://media.uottawa.ca/news/how-fortnite-and-zelda-can-your-surgical-game-no-joke

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://bioengineer.org/how-fortnite-and-zelda-can-up-your-surgical-game-no-joke/

Continue Reading
Esports5 days ago

C9 White Keiti Blackmail Scandal Explains Sudden Dismissal

Esports5 days ago

Overwatch League 2021 Day 1 Recap

Esports5 days ago

Fortnite: Epic Vaults Rocket Launchers, Cuddlefish & Explosive Bows From Competitive

Esports5 days ago

Gamers Club and Riot Games Organize Women’s Valorant Circuit in Latin America

Blockchain5 days ago

15. BNB Burn: Binance zerstört Coins im Wert von 600 Mio. USD

Esports5 days ago

LoL gameplay design director pulled, transferred to Riot’s MMO

Esports5 days ago

Lakeland University Partners With Bucks Gaming for the 2021 NBA 2K League Season

Esports5 days ago

How to counter Renekton in League of Legends

Blockchain4 days ago

Elon Musk twittert Dogecoin auf neues Allzeithoch

Esports5 days ago

How to play League of Legends’ newest champion Gwen

Esports5 days ago

3 big reasons why Dota 2’s new hero Dawnbreaker is just bad

Esports4 days ago

Dota 2 patch 7.29b brings nerfs to Phantom Lancer and Lifestealer amongst other hero balance changes

Esports4 days ago

Code S: Trap & Zest advance to RO8, playoff bracket set

Esports4 days ago

New CSGO Update Makes Items Purchased From Store Non Tradable for a Week

Esports5 days ago

Sumail’s absence; A gap year or fall from grace?

Esports4 days ago

Apex Legends Season 9 will add new hero, fix Banglore bugs

Blockchain2 days ago

Mining Bitcoin: How to Mine Bitcoin

Esports4 days ago

Radiant Valorant streamer Solista banned for cheating on live stream

Esports5 days ago

Levi’s Finds Partnership With NRG Esports is a Good Fit

Esports4 days ago

How to Calculate Steam Market Tax on CSGO Items

Trending