Zephyrnet Logo

Nanotechnology to advance CRISPR–Cas genetic engineering of plants

Date:

  • 1.

    Khush, G. S. & Virk, P. S. IR Varieties and Their Impact (International Rice Research Institute, 2005).

  • 2.

    Altpeter, F. et al. Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520 (2016).

    CAS  Google Scholar 

  • 3.

    Mahfouz, M. M., Piatek, A. & Stewart, C. N. Jr Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol. J. 12, 1006–1014 (2014).

    CAS  Google Scholar 

  • 4.

    Hamilton, J. R. & Doudna, J. A. Knocking out barriers to engineered cell activity. Science 367, 976–977 (2020).

    CAS  Google Scholar 

  • 5.

    Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    CAS  Google Scholar 

  • 6.

    Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS  Google Scholar 

  • 7.

    Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 164, 537–547 (2014). This work demonstrates the feasibility of plant genome editing in maize through nanoparticle-mediated protein delivery.

    CAS  Google Scholar 

  • 8.

    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS  Google Scholar 

  • 9.

    Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS  Google Scholar 

  • 10.

    Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020).

    CAS  Google Scholar 

  • 11.

    Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    Google Scholar 

  • 12.

    Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    CAS  Google Scholar 

  • 13.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015). This study demonstrates the transgene-free genome editing of important crop species using CRISPR-Cas9 ribonucleoproteins.

    CAS  Google Scholar 

  • 14.

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Cigan, A. M. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    CAS  Google Scholar 

  • 15.

    Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    CAS  Google Scholar 

  • 16.

    Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020). This is a comprehensive review on the applications of CRISPR genome editing in plants for biotechnology and agriculture.

    CAS  Google Scholar 

  • 17.

    Gordon-Kamm, B. et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8, 38 (2019).

    CAS  Google Scholar 

  • 18.

    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016). This seminal work discovers morphogenic regulators that advance regeneration of monocot plant species in tissue culture.

    CAS  Google Scholar 

  • 19.

    Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020). This groundbreaking work demonstrates de novo induction of meristems in tobacco to facilitate tissue culture-free plant genome editing.

    CAS  Google Scholar 

  • 20.

    Eeckhaut, T., Lakshmanan, P. S., Deryckere, D., Van Bockstaele, E. & Van Huylenbroeck, J. Progress in plant protoplast research. Planta 238, 991–1003 (2013).

    CAS  Google Scholar 

  • 21.

    Zafar, K. et al. Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front. Genome Editing 2, 5 (2020).

    Google Scholar 

  • 22.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  Google Scholar 

  • 23.

    Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020). This recent publication translates an important genome-editing tool of prime editing to rice and wheat.

    CAS  Google Scholar 

  • 24.

    Yin, X. et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. 36, 745–757 (2017).

    CAS  Google Scholar 

  • 25.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  Google Scholar 

  • 26.

    Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Google Scholar 

  • 27.

    Naim, F. et al. Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS ONE 15, e0227994 (2020).

    CAS  Google Scholar 

  • 28.

    Arndell, T. et al. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol. 19, 71 (2019).

    Google Scholar 

  • 29.

    Liang, Y. et al. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnol. Biofuels 12, 130 (2019).

    Google Scholar 

  • 30.

    Rhee, S. Y. & Mutwil, M. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19, 212–221 (2014).

    CAS  Google Scholar 

  • 31.

    Kersey, P. J. Plant genome sequences: past, present, future. Curr. Opin. Plant Biol. 48, 1–8 (2019).

    CAS  Google Scholar 

  • 32.

    Hrbáčková, M. et al. Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Front. Plant Sci. 11, 592 (2020).

    Google Scholar 

  • 33.

    Ladics, G. S. et al. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 24, 587–603 (2015).

    CAS  Google Scholar 

  • 34.

    Torney, F., Trewyn, B. G., Lin, V. S. Y. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2, 295–300 (2007).

    CAS  Google Scholar 

  • 35.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS  Google Scholar 

  • 36.

    Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    CAS  Google Scholar 

  • 37.

    Thagun, C., Chuah, J. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell‐penetrating and chloroplast‐targeting peptides. Adv. Sci. 6, 1902064 (2019).

    CAS  Google Scholar 

  • 38.

    Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS  Google Scholar 

  • 39.

    Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    CAS  Google Scholar 

  • 40.

    Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    CAS  Google Scholar 

  • 41.

    Díez, P. et al. Neoglycoenzyme-gated mesoporous silica nanoparticles: toward the design of nanodevices for pulsatile programmed sequential delivery. ACS Appl. Mater. Interfaces 8, 7657–7665 (2016).

    Google Scholar 

  • 42.

    Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    CAS  Google Scholar 

  • 43.

    Du, W. et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 13, 822–828 (2011).

    CAS  Google Scholar 

  • 44.

    Al-Salim, N. et al. Quantum dot transport in soil, plants, and insects. Sci. Total Environ. 409, 3237–3248 (2011).

    CAS  Google Scholar 

  • 45.

    Zhu, Z.-J. et al. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46, 12391–12398 (2012).

    CAS  Google Scholar 

  • 46.

    Milewska-Hendel, A., Zubko, M., Karcz, J., Stróż, D. & Kurczyńska, E. Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci. Rep. 7, 3014 (2017).

    Google Scholar 

  • 47.

    Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36, 882–897 (2018). This review paper provides a comprehensive summary of nanomaterial tools used in plant genetic engineering and plant biotechnology.

    CAS  Google Scholar 

  • 48.

    Genetically Engineered Crops: Experiences and Prospects (National Academies Press, 2016).

  • 49.

    Prado, J. R. et al. Genetically engineered crops: from idea to product. Annu. Rev. Plant Biol. 65, 769–790 (2014).

    CAS  Google Scholar 

  • 50.

    Importation, interstate movement, and release into the environment of certain genetically engineered organisms [excerpts]. Biotechnol. Law Rep. 28, 382–408 (2009).

  • 51.

    Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 36, 6–7 (2018).

    CAS  Google Scholar 

  • 52.

    Gupta, M., Gerard, M., Padmaja, S. S. & Sastry, R. K. Trends of CRISPR technology development and deployment into agricultural production-consumption systems. World Pat. Inf. 60, 101944 (2020).

    Google Scholar 

  • 53.

    Zhang, D. et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol. J. 18, 1651–1669 (2020).

    Google Scholar 

  • 54.

    Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 560, 16 (2018).

    CAS  Google Scholar 

  • 55.

    Holme, I. B., Gregersen, P. L. & Brinch-Pedersen, H. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front. Plant Sci. 10, 1468 (2019).

    Google Scholar 

  • 56.

    Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008).

    CAS  Google Scholar 

  • 57.

    Pikula, K. et al. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae. Nanomaterials 10, 485 (2020).

    CAS  Google Scholar 

  • 58.

    Kermanizadeh, A. et al. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Health B 19, 1–28 (2016).

    CAS  Google Scholar 

  • 59.

    Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

    CAS  Google Scholar 

  • Checkout PrimeXBT
    Trade with the Official CFD Partners of AC Milan
    Source: https://www.nature.com/articles/s41565-021-00854-y

    spot_img

    Latest Intelligence

    spot_img