Zephyrnet Logo

Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif

Date:

  • Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Sorvillo, N. et al. Extracellular DNA NET-works with dire consequences for health. Circ. Res. 125, 470–488 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Albadawi, H. et al. Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J. Vasc. Surg. 64, 484–493 (2016).

    Article 

    Google Scholar
     

  • Ramacciotti, E. et al. P-selectin/PSGL-1 inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis. Thromb. Res. 125, e138–e142 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Kim, K. et al. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood 126, 1952–1964 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Xu, L. et al. Heterobivalent ligands target cell-surface receptor combinations in vivo. Proc. Natl Acad. Sci. USA 109, 21295–21300 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Gunawan, R. C., Almeda, D. & Auguste, D. T. Complementary targeting of liposomes to IL-1α and TNF-α activated endothelial cells via the transient expression of VCAM1 and E-selectin. Biomaterials 32, 9848–9853 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sapra, P. & Allen, T. M. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin. Cancer Res. 10, 2530–2537 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Kanapathipillai, M., Brock, A. & Ingber, D. E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev. 79, 107–118 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 9, 204–210 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chu, D. et al. Nanoparticle targeting of neutrophils for improved cancer immunotherapy. Adv. Healthc. Mater. 5, 1088–1093 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Robertson, J. D. et al. Targeting neutrophilic inflammation using polymersome-mediated cellular delivery. J. Immunol. 198, 3596–3604 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liou, T. G. & Campbell, E. J. Nonisotropic enzyme–inhibitor interactions: a novel nonoxidative mechanism for quantum proteolysis by human neutrophils. Biochemistry 34, 16171–16177 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Owen, C. A. et al. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J. Cell Biol. 131, 775–789 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Stenberg, P. E. et al. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell Biol. 101, 880–886 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Elliott, P. R. et al. Inhibitory conformation of the reactive loop of α1-antitrypsin. Nat. Struct. Biol. 3, 676–681 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Elliott, P. R. et al. Topography of a 2.0 Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. 9, 1274–1281 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Forsyth, S., Horvath, A. & Coughlin, P. A review and comparison of the murine α1-antitrypsin and α1-antichymotrypsin multigene clusters with the human clade A serpins. Genomics 81, 336–345 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Gehrig, S., Mall, M. A. & Schultz, C. Spatially resolved monitoring of neutrophil elastase activity with ratiometric fluorescent reporters. Angew. Chem. Int. Ed. 51, 6258–6261 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Beatty, K., Bieth, J. & Travis, J. Kinetics of association of serine proteinases with native and oxidized α-1-proteinase inhibitor and α-1-antichymotrypsin. J. Biol. Chem. 255, 3931–3934 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Appeldoorn, C. C. et al. Rational optimization of a short human P-selectin-binding peptide leads to nanomolar affinity antagonists. J. Biol. Chem. 278, 10201–10207 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Modery, C. L. et al. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 32, 9504–9514 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Daley, J. M. et al. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Elliott, J. T. & Prestwich, G. D. Maleimide-functionalized lipids that anchor polypeptides to lipid bilayers and membranes. Bioconjug. Chem. 11, 832–841 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol. Biol. 1522, 17–22 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hope, M. J. et al. Reduction of liposome size and preparation of unilamellar vesicles by extrusion techniques. Liposome Technol. 1, 123–139 (1993).

    CAS 

    Google Scholar
     

  • Bennewitz, M. F. et al. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight 2, e89761 (2017).

    Article 

    Google Scholar
     

  • von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Martinod, K. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl Acad. Sci. USA 110, 8674–8679 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lehmann, M. et al. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI–dependent manner in an in vitro venous thrombosis model. Arterioscler. Thromb. Vasc. Biol. 38, 1052–1062 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ramacciotti, E. et al. Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin. Appl. Thromb. Hemost. 17, 425–431 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Dyer, M. R. et al. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J. Thromb. Haemost. 17, 1733–1745 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bhattacharya, A. et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep. 12, 1731–1739 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Melles, R. B. & Marmor, M. F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 132, 1453–1460 (2014).

    Article 

    Google Scholar
     

  • Mercuro, N. J. et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 9, 1036–1041 (2020).

    Article 

    Google Scholar
     

  • Sames, E., Paterson, H. & Li, C. Hydroxychloroquine-induced agranulocytosis in a patient with long-term rheumatoid arthritis. Eur. J. Rheumatol. 3, 91–92 (2016).

    Article 

    Google Scholar
     

  • Castanheira, F. V. S. & Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 2178–2185 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Silvestre-Roig, C. et al. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Djie, M. Z., Stone, S. R. & Le Bonniec, B. F. Intrinsic specificity of the reactive site loop of α1-antitrypsin, α1-antichymotrypsin, antithrombin III, and protease nexin I. J. Biol. Chem. 272, 16268–16273 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Peiser, L., Mukhopadhyay, S. & Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14, 123–128 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bulbake, U. et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9, 12 (2017).

  • Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Pawlowski, C. L. et al. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 128, 94–108 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Stavrou, E. X. et al. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J. Clin. Invest. 128, 944–959 (2018).

    Article 

    Google Scholar
     

  • Stavrou, E. X. et al. Host and tumor factor XII drive ovarian cancer maintenance and progression. Blood 134, 2384–2384 (2019).

    Article 

    Google Scholar
     

  • Englert, H. et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation. EBioMedicine 67, 103382 (2021).

    CAS 
    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?