Zephyrnet Logo

Molecular coating enhances organic solar cells

Date:

Home > Press > Molecular coating enhances organic solar cells

The team fabricated an organic solar cell that, unlike conventional solar cells, can be easily recycled following the simple steps shown above. Adapted from Lin et al. (2021)

Abstract:
An electrode coating just one molecule thick can significantly enhance the performance of an organic photovoltaic cell, KAUST researchers have found. The coating outperforms the leading material currently used for this task and may pave the way for improvements in other devices that rely on organic molecules, such as light-emitting diodes and photodetectors.

 

Molecular coating enhances organic solar cells

Thuwal, Saudi Arabia | Posted on June 11th, 2021

Unlike the most common photovoltaic cells that use crystalline silicon to harvest light, organic photovoltaic cells (OPVs) rely on a light-absorbing layer of carbon-based molecules. Although OPVs cannot yet rival the performance of silicon cells, they could be easier and cheaper to manufacture at a very large scale using printing techniques.

When light enters a photovoltaic cell, its energy frees a negative electron and leaves behind a positive gap, known as a hole. Different materials then gather the electrons and holes and guide them to different electrodes to generate an electrical current. In OPVs, a material called PEDOT:PSS is widely used to ease the transfer of generated holes into an electrode; however, PEDOT:PSS is expensive, acidic and can degrade the cell’s performance over time.

The KAUST team has now developed a better alternative to PEDOT:PSS. They use a much thinner coating of a hole-transporting molecule called Br-2PACz, which binds to an indium tin oxide (ITO) electrode to form a single-molecule layer. The organic cell using Br-2PACz achieved a power conversion efficiency of 18.4 percent, whereas an equivalent cell using PEDOT:PSS reached only 17.5 percent.

“We were very surprised indeed by the performance enhancement,” says Yuanbao Lin, Ph.D. student and member of the team. “We believe Br-2PACz has the potential to replace PEDOT:PSS due to its low cost and high performance.”

Br-2PACz increased the cell’s efficiency in several ways. Compared with its rival, it caused less electrical resistance, improved hole transport and allowed more light to shine through to the absorbing layer. Br-2PACz also improved the structure of the light-absorbing layer itself, an effect that may be related to the coating process.

The coating could even improve the recyclability of the solar cell. The researchers found that the ITO electrode could be removed from the cell, stripped of its coating and then reused as if it was new. In contrast, PEDOT:PSS roughens the surface of the ITO so that it performs poorly if reused in another cell. “We anticipate this will have a dramatic impact on both the economics of OPVs and the environment,” says Thomas Anthopoulos, who led the research.

####

For more information, please click here

Contacts:
Michael Cusack

Copyright © King Abdullah University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

 

Related News Press

News and information

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Organic Electronics

Light-emitting tattoo engineered for the first time: Scientists at UCL and the IIT -Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of March 4th, 2021

Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics January 28th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

HKU Engineering team develops novel miniaturised organic semiconductor: An important breakthrough essential for future flexible electronic devices October 8th, 2020

Possible Futures

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Discoveries

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Announcements

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Energy

New form of silicon could enable next-gen electronic and energy devices: Novel crystalline form of silicon could potentially be used to create next-generation electronic and energy devices June 4th, 2021

Researchers build structured, multi-part nanocrystals with super light-emitting properties May 28th, 2021

Emergence of a new heteronanostructure library May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Solar/Photovoltaic

New form of silicon could enable next-gen electronic and energy devices: Novel crystalline form of silicon could potentially be used to create next-generation electronic and energy devices June 4th, 2021

Researchers build structured, multi-part nanocrystals with super light-emitting properties May 28th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56711

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?