Zephyrnet Logo

Micro-aeration: an attractive strategy to facilitate anaerobic digestion

Date:

    • Náthia-Neves G.
    • et al.

    Anaerobic digestion process: technological aspects and recent developments.

    Int. J. Environ. Sci. Technol. 2018; 15: 2033-2046

    • Merlin G.
    • Boileau H.

    Anaerobic digestion of agricultural waste: state of the art and future trends.

    in: Torrles A. Anaerobic digestion: types, processes and environmental impact. Nova Science,
    2013

    • Zhang T.
    • et al.

    New insight on Fe-bioavailability: bio-uptake, utilization and induce in optimizing methane production in anaerobic digestion.

    Chem. Eng. J. 2022; 441136099

    • Xiao L.
    • et al.

    Enhanced methane production by granular activated carbon: a review.

    Fuel. 2022; 320123903

    • Abanades S.
    • et al.

    A critical review of biogas production and usage with legislations framework across the globe.

    Int. J. Environ. Sci. Technol. (Tehran). 2022; 19: 3377-3400

    • Fu S.
    • et al.

    In situ biogas upgrading by CO2-to-CH4 bioconversion.

    Trends Biotechnol. 2021; 39: 336-347

    • Nguyen D.
    • et al.

    Intermittent micro-aeration: new strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion.

    Water Res. 2019; 166115080

    • Verstraete W.
    • et al.

    Microbial resource management: the road to go for environmental biotechnology.

    Eng. Life Sci. 2007; 7: 117-126

    • Carballa M.
    • et al.

    Microbial management of anaerobic digestion: exploiting the microbiome–functionality nexus.

    Curr. Opin. Biotechnol. 2015; 33: 103-111

    • Chen Q.
    • et al.

    Review on microaeration-based anaerobic digestion: state of the art, challenges, and prospectives.

    Sci. Total Environ. 2020; 710136388

    • Lu Z.
    • Imlay J.A.

    When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence.

    Nat. Rev. Microbiol. 2021; 19: 774-785

    • Xu H.
    • et al.

    Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions.

    Bioresour. Technol. 2021; 328124852

    • Zeb I.
    • et al.

    In-situ microaeration of anaerobic digester treating buffalo manure for enhanced biogas yield.

    Renew. Energy. 2022; 181: 843-850

    • Andreides M.
    • et al.

    Stirring-based control strategy for microaerobic H2S removal in sequencing batch anaerobic digesters.

    Fuel. 2021; 306121696

    • Diaz I.
    • et al.

    Effect of microaerobic conditions on the degradation kinetics of cellulose.

    Bioresour. Technol. 2011; 102: 10139-10142

    • Fdz-Polanco M.
    • et al.

    Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience.

    Water Sci. Technol. 2009; 60: 3045-3050

    • Li J.
    • et al.

    Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: a review.

    Sci. Total Environ. 2022; 838156454

    • Khademian M.
    • Imlay J.A.

    How microbes evolved to tolerate oxygen.

    Trends Microbiol. 2021; 29: 428-440

    • Nguyen D.
    • Khanal S.K.

    A little breath of fresh air into an anaerobic system: how microaeration facilitates anaerobic digestion process.

    Biotechnol. Adv. 2018; 36: 1971-1983

    • Liu C.G.
    • et al.

    Redox potential control and applications in microaerobic and anaerobic fermentations.

    Biotechnol. Adv. 2013; 31: 257-265

    • Kato M.T.
    • et al.

    Methanogenesis in granular sludge exposed to oxygen.

    FEMS Microbiol. Lett. 1993; 114: 317-324

    • Shen C.F.
    • Guiot S.R.

    Long-term impact of dissolved O2 on the activity of anaerobic granules.

    Biotechnol. Bioeng. 1996; 49: 611-620

    • Shen C.F.
    • et al.

    Methanotroph and methanogen coupling in granular biofilm under O2-limited conditions.

    Biotechnol. Lett. 1996; 18: 495-500

    • Cheng F.
    • Brewer C.E.

    Conversion of protein-rich lignocellulosic wastes to bio-energy: review and recommendations for hydrolysis + fermentation and anaerobic digestion.

    Renew. Sust. Energ. Rev. 2021; 146111167

    • Ariunbaatar J.
    • et al.

    Pretreatment methods to enhance anaerobic digestion of organic solid waste.

    Appl. Energy. 2014; 123: 143-156

    • Fu S.-F.
    • et al.

    Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure.

    Chem. Eng. J. 2016; 287: 523-528

    • Duarte M.S.
    • et al.

    Insight into the role of facultative bacteria stimulated by microaeration in continuous bioreactors converting LCFA to methane.

    Environ. Sci. Technol. 2018; 52: 6497-6507

    • Hanreich A.
    • et al.

    Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation.

    Syst. Appl. Microbiol. 2013; 36: 330-338

    • Ariesyady H.D.
    • et al.

    Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.

    Water Res. 2007; 41: 1554-1568

    • Zhu R.
    • et al.

    Understanding the mechanisms behind micro-aeration to enhance anaerobic digestion of corn straw.

    Fuel. 2022; 318: 3604

    • Lim J.W.
    • et al.

    Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste.

    Bioresour. Technol. 2014; 171: 132-138

    • Xu S.
    • et al.

    Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste.

    Waste Manag. 2014; 34: 363-369

    • Zhu R.
    • et al.

    The effects of micro-aeration on semi-continued anaerobic digestion of corn straw with increasing organic loading rates.

    Renew. Energy. 2022; 195: 1194-1201

    • Yang H.
    • Deng L.

    Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids.

    Bioresour. Technol. 2020; 318124047

    • Wu Z.
    • et al.

    Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic–anaerobic digestion of lignocellulosic biomass.

    Water Res. 2021; 190116721

    • Ruan R.
    • et al.

    Performance evaluation of combining microaerobic desulphurization with addition of rusty scrap iron (RSI) during waste-activated sludge digestion.

    Desalin. Water Treat. 2017; 84: 169-179

    • Krayzelova L.
    • et al.

    Microaeration for hydrogen sulfide removal during anaerobic treatment: a review.

    Rev. Environ. Sci. Biotechnol. 2015; 14: 703-725

    • Heidelberg J.F.
    • et al.

    The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

    Nat. Biotechnol. 2004; 22: 554-559

    • Hirasawa J.S.
    • et al.

    Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.

    Anaerobe. 2008; 14: 209-218

    • Muyzer G.
    • Stams A.J.M.

    The ecology and biotechnology of sulphate-reducing bacteria.

    Nat. Rev. Microbiol. 2008; 6: 441-454

    • Huertas J.K.
    • et al.

    Comparing hydrogen sulfide removal efficiency in a field-scale digester using microaeration and iron filters.

    Energies. 2020; 13: 4793

    • Ramos I.
    • et al.

    The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge.

    Water Sci. Technol. 2012; 66: 2258-2264

    • Ramos I.
    • et al.

    The headspace of microaerobic reactors: sulphide-oxidising population and the impact of cleaning on the efficiency of biogas desulphurisation.

    Bioresour. Technol. 2014; 158: 63-73

    • Giordano A.
    • et al.

    Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge.

    Int. Biodeterior. Biodegradation. 2019; 142: 131-136

    • Castro I.M.P.
    • et al.

    Evaluation of microaeration strategies in the digestion zone of UASB reactors as an alternative for biogas desulfurization.

    Environ. Technol. 2021; (Published online September 10, 2021)

    • Mahdy A.
    • et al.

    Simultaneous H2S mitigation and methanization enhancement of chicken manure through the introduction of the micro-aeration approach.

    Chemosphere. 2020; 253126687

    • Song Y.
    • et al.

    Air supplement as a stimulation approach for the in situ desulfurization and methanization enhancement of anaerobic digestion of chicken manure.

    Energy Fuel. 2020; 34: 12606-12615

    • Cheng Z.
    • et al.

    Enhancement of surfactant biodegradation with an anaerobic membrane bioreactor by introducing microaeration.

    Chemosphere. 2018; 208: 343-351

    • Siqueira J.P.S.
    • et al.

    Process bioengineering applied to BTEX degradation in microaerobic treatment systems.

    J. Environ. Manag. 2018; 223: 426-432

    • Zhang Z.
    • et al.

    Coupling of membrane-based bubbleless micro-aeration for 2,4-dinitrophenol degradation in a hydrolysis acidification reactor.

    Water Res. 2022; 212118119

    • Zhang C.
    • Bennett G.N.

    Biodegradation of xenobiotics by anaerobic bacteria.

    Appl. Microbiol. Biotechnol. 2005; 67: 600-618

    • Lian S.
    • et al.

    Accelerated adsorption of tetracyclines and microbes with FeOn(OH)m modified oyster shell: its application on biotransformation of oxytetracycline in anaerobic enrichment culture.

    Chem. Eng. J. 2021; 425130499

    • Raymond J.
    • Segrè D.

    The effect of oxygen on biochemical networks and the evolution of complex life.

    Science. 2006; 311: 1764-1767

    • Meunier B.
    • et al.

    Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes.

    Chem. Rev. 2004; 104: 3947-3980

    • Yeom S.J.
    • et al.

    P450-driven plastic-degrading synthetic bacteria.

    Trends Biotechnol. 2022; 40: 166-179

    • Jia Y.
    • et al.

    Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways.

    Water Res. 2018; 136: 64-74

    • Behrendorff J.

    Reductive cytochrome P450 reactions and their potential role in bioremediation.

    Front. Microbiol. 2021; 12649273

    • Achinas S.
    • et al.

    Microbiology and biochemistry of anaerobic digesters: an overview.

    Bioreactors. 2020; 2020: 17-26

    • Laiq Ur Rehman M.
    • et al.

    Anaerobic digestion.

    Water Environ. Res. 2019; 91: 1253-1271

    • Sekiguchi Y.
    • et al.

    Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules.

    Appl. Environ. Microbiol. 1999; 65: 1280-1288

    • Lyu Z.
    • Lu Y.

    Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments.

    ISME J. 2018; 12: 411-423

    • Andrade K.
    • et al.

    Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem.

    ISME J. 2015; 9: 2697-2711

    • Fu S.-F.
    • et al.

    Effect of different mixed microflora on the performance of thermophilic microaerobic pretreatment.

    Energy Fuel. 2016; 30: 6413-6418

    • Jenicek P.
    • et al.

    Simple biogas desulfurization by microaeration – full scale experience.

    Anaerobe. 2017; 46: 41-45

    • Jenicek P.
    • et al.

    Advantages of anaerobic digestion of sludge in microaerobic conditions.

    Water Sci. Technol. 2010; 62: 427-434

    • Sheets J.P.
    • et al.

    Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass.

    Bioresour. Technol. 2015; 180: 296-303

    • Kundu S.
    • et al.

    A review on understanding explosions from methane–air mixture.

    J. Loss Prev. Process Ind. 2016; 40: 507-523

    • Werkneh A.A.

    Application of membrane-aerated biofilm reactor in removing water and wastewater pollutants: current advances, knowledge gaps and research needs – a review.

    Environ. Chall. 2022; 8100529

    • Chuenchart W.
    • et al.

    Nanobubble technology in anaerobic digestion: a review.

    Bioresour. Technol. 2021; 329124916

    • Wang X.
    • et al.

    Improved methane production from corn straw using anaerobically digested sludge pre-augmented by nanobubble water.

    Bioresour. Technol. 2020; 311123479

    • Wang X.
    • et al.

    Supplementation of O2-containing gas nanobubble water to enhance methane production from anaerobic digestion of cellulose.

    Chem. Eng. J. 2020; 398125652

    • Xiao W.
    • Xu G.

    Mass transfer of nanobubble aeration and its effect on biofilm growth: microbial activity and structural properties.

    Sci. Total Environ. 2020; 703134976

    • Willemen N.G.A.
    • et al.

    Oxygen-releasing biomaterials: current challenges and future applications.

    Trends Biotechnol. 2021; 39: 1144-1159

    • Fu S.-F.
    • et al.

    Improved methane production of corn straw by the stimulation of calcium peroxide.

    Energy Convers. Manag. 2018; 164: 36-41

    • Tartakovsky B.
    • et al.

    Electrolysis-enhanced anaerobic digestion of wastewater.

    Bioresour. Technol. 2011; 102: 5685-5691

    • Geppert F.
    • et al.

    Bioelectrochemical power-to-gas: state of the art and future perspectives.

    Trends Biotechnol. 2016; 34: 879-894

    • Horne A.J.
    • Lessner D.J.

    Assessment of the oxidant tolerance of Methanosarcina acetivorans.

    FEMS Microbiol. Lett. 2013; 343: 13-19

    • Fu S.-F.
    • et al.

    Improved anaerobic digestion performance of Miscanthus floridulus by different pretreatment methods and preliminary economic analysis.

    Energy Convers. Manag. 2018; 159: 121-128

    • Guo B.
    • et al.

    Effects of micro-aeration on microbial niches and antimicrobial resistances in blackwater anaerobic digesters.

    Water Res. 2021; 196117035

    • Fan Y.
    • et al.

    Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: buffering capacity promotion and methane production enhancement.

    Bioresour. Technol. 2021; 333125131

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?