Connect with us

Nano Technology

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

Avatar

Published

on

Home > Press > Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The atomic landscape of chromium halides are illustrated. The magnetic chromium atoms appear as gray spheres and the non-magnetic ligand atoms as green (chlorine), orange (bromine), and magenta (iodine) spheres. CREDIT
Fazel Tafti
The atomic landscape of chromium halides are illustrated. The magnetic chromium atoms appear as gray spheres and the non-magnetic ligand atoms as green (chlorine), orange (bromine), and magenta (iodine) spheres. CREDIT
Fazel Tafti

Abstract:
The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers, reports in the most recent edition of Science Advances.

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties


Chestnut Hill, MA | Posted on July 24th, 2020

The seemingly counter-intuitive method is based on a mechanism known as an indirect exchange interaction, according to Boston College Assistant Professor of Physics Fazel Tafti, a lead author of the report.

An indirect interaction is mediated between two magnetic atoms via a non-magnetic atom known as the ligand. The Tafti Lab findings show that by changing the composition of these ligand atoms, all the magnetic properties can be easily tuned.

“We addressed a fundamental question: is it possible to control the magnetic properties of a material by changing the non-magnetic elements?” said Tafti. “This idea and the methodology we report on are unprecedented. Our findings demonstrate a new approach to create synthetic layered magnets with unprecedented level of control over their magnetic properties.”

Magnetic materials are the backbone of most current technology, such as the magnetic memory in our mobile devices. It is common practice to tune the magnetic properties by modifying the magnetic atoms in a material. For example, one magnetic element, such as chromium, can be replaced with another one, such as iron.

The team studied ways to experimentally control the magnetic properties of inorganic magnetic materials, specifically, chromium halides. These materials are made of one Chromium atom and three halide atoms: Chlorine, Bromine, and Iodine.

The central finding illustrates a new method of controlling the magnetic interactions in layered materials by using a special interaction known as the ligand spin-orbit coupling. The spin-orbit coupling is a property of an atom to re-orient the direction of spins – the tiny magnets on the electrons – with the orbital movement of the electrons around the atoms.

This interaction controls the direction and magnitude of magnetism. Scientists have been familiar with the spin-orbit coupling of the magnetic atoms, but they did not know that the spin-orbit coupling of the non-magnetic atoms could also be utilized to re-orient the spins and tune the magnetic properties, according to Tafti.

The team was surprised that they could generate an entire phase diagram by modifying the non-magnetic atoms in a compound, said Tafti, who co-authored the report with fellow BC physicists Ying Ran and Kenneth Burch, post-doctoral researchers Joseph Tang and Mykola Abramchuk, graduate student Faranak Bahrami, and undergraduate students Thomas Tartaglia and Meaghan Doyle. Julia Chan and Gregory McCandless of the University of Texas, Dallas, and Jose Lado of Finland’s Aalto University, were also part of the team.

“This finding puts forward a novel procedure to control magnetism in layered materials, opening up a pathway to create new synthetic magnets with exotic properties,” Tafti said. “Moreover, we found strong signatures of a potentially exotic quantum state associated to magnetic frustration, an unexpected discovery that can lead to an exciting new research direction.”

Tafti said the next step is to use these materials in innovative technologies such as magneto-optical devices or the new generation of magnetic memories.

####

For more information, please click here

Contacts:
Ed Hayward
617-552-4826

@BostonCollege

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

Magnetism

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

IKBFU and University of Oviedo Physicists tested new research model on magnetic materials: Soft magnetic ferromagnetic microwires are used for magnetic field sensors, as well as for encoding and reading information April 24th, 2020

Magnet research takes giant leap April 10th, 2020

Possible Futures

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys’ strength-ductility trade-off and thermal instability July 24th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

Memory Technology

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Graphene-Adsorbate van der Waals bonding memory inspires ‘smart’ graphene sensors July 17th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Discoveries

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

Announcements

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Russian scientists identified energy storage mechanism of sodium-ion battery anode July 24th, 2020

Photonics/Optics/Lasers

Brazilian researchers develop an optical fiber made of gel derived from marine algae: Edible, biocompatible and biodegradable, these fibers have potential for various medical applications. The results are described in the journal Scientific Reports. July 24th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56269

Nano Technology

When Dirac meets frustrated magnetism

Avatar

Published

on

Home > Press > When Dirac meets frustrated magnetism

Schematic of the triangular vanadium net (purple balls) with magnetic moments (turqouise arrows) and the anomalous hall effect (red balls are electrons and blue are holes) from the Dirac quasiparticles (Dirac diabolo shown left). CREDIT
MPI of Microstructure Physics
Schematic of the triangular vanadium net (purple balls) with magnetic moments (turqouise arrows) and the anomalous hall effect (red balls are electrons and blue are holes) from the Dirac quasiparticles (Dirac diabolo shown left). CREDIT
MPI of Microstructure Physics

Abstract:
The fields of condensed matter physics and material science are intimately linked because new physics is often discovered in materials with special arrangements of atoms. Crystals, which have repeating units of atoms in space, can have special patterns which result in exotic physical properties. Particularly exciting are materials which host multiple types of exotic properties because they give scientists the opportunity to study how those properties interact with and influence each other. The combinations can give rise to unexpected phenomena and fuel years of basic and technological research.

When Dirac meets frustrated magnetism


Halle, Germany | Posted on August 3rd, 2020

In a new study published in Science Advances this week, an international team of scientists from the USA, Columbia, Czech Republic, England, and led by Dr. Mazhar N. Ali at the Max Planck Institute of Microstructure Physics in Germany, has shown that a new material, KV3Sb5, has a never-seen-before combination of properties that results in one of the largest anomalous Hall effects (AHEs) ever observed; 15,500 siemens per centimeter at 2 Kelvin.

Discovered in the lab of co-author Prof. Tyrel McQueen at Johns Hopkins University, KV3Sb5 combines four properties into one material: Dirac physics, metallic frustrated magnetism, 2D exfoliability (like graphene), and chemical stability.

Dirac physics, in this context, relates to the fact that the electrons in KV3Sb5 aren’t just your normal run-of-the-mill electrons; they are moving extremely fast with very low effective mass. This means that they are acting “light-like”; their velocities are becoming comparable to the speed of light and they are behaving as though they have only a small fraction of the mass which they should have. This results in the material being highly metallic and was first shown in graphene about 15 years ago.

The “frustrated magnetism” arises when the magnetic moments in a material (imagine little bar magnets which try to turn each other and line up North to South when you bring them together) are arranged in special geometries, like triangular nets. This scenario can make it hard for the bar magnets to line up in way that they all cancel each other out and are stable. Materials exhibiting this property are rare, especially metallic ones. Most frustrated magnet materials are electrical insulators, meaning that their electrons are immobile. “Metallic frustrated magnets have been highly sought after for several decades. They have been predicted to house unconventional superconductivity, Majorana fermions, be useful for quantum computing, and more,” commented Dr. Ali.

Structurally, KV3Sb5 has a 2D, layered structure where triangular vanadium and antimony layers loosely stack on top of potassium layers. This allowed the authors to simply use tape to peel off a few layers (a.k.a. flakes) at a time. “This was very important because it allowed us to use electron-beam lithography (like photo-lithography which is used to make computer chips, but using electrons rather than photons) to make tiny devices out of the flakes and measure properties which people can’t easily measure in bulk.” remarked lead author Shuo-Ying Yang, from the Max Planck Institute of Microstructure Physics. “We were excited to find that the flakes were quite stable to the fabrication process, which makes it relatively easy to work with and explore lots of properties”.

Armed with this combination of properties, the team first chose to look for an anomalous Hall effect (AHE) in the material. This phenomenon is where electrons in a material with an applied electric field (but no magnetic field) can get deflected by 90 degrees by various mechanisms. “It had been theorized that metals with triangular spin arrangements could host a significant extrinsic effect, so it was a good place to start,” noted Yang. Using angle resolved photoelectron spectroscopy, microdevice fabrication, and a low temperature electronic property measurement system, Shuo-Ying and co-lead author Yaojia Wang (Max Planck Institute of Microstructure Physics) were able to observe one of the largest AHE’s ever seen.

The AHE can be broken into two general categories: intrinsic and extrinsic. “The intrinsic mechanism is like if a football player made a pass to their teammate by bending the ball, or electron, around some defenders (without it colliding with them),” explained Ali. “Extrinsic is like the ball bouncing off of a defender, or magnetic scattering center, and going to the side after the collision. Many extrinsically dominated materials have a random arrangement of defenders on the field, or magnetic scattering centers randomly diluted throughout the crystal. KV3Sb5 is special in that it has groups of 3 magnetic scattering centers arranged in a triangular net. In this scenario, the ball scatters off of the cluster of defenders, rather than a single one, and is more likely to go to the side than if just one was in the way.” This is essentially the theorized spin-cluster skew scattering AHE mechanism which was demonstrated by the authors in this material. “However the condition with which the incoming ball hits the cluster seems to matter; you or I kicking the ball isn’t the same as if, say, Christiano Ronaldo kicked the ball,” added Ali. “When Ronaldo kicks it, it is moving way faster and bounces off of the cluster with way more velocity, moving to the side faster than if just any average person had kicked it. This is, loosely speaking, the difference between the Dirac quasiparticles (Ronaldo) in this material vs normal electrons (average person) and is related to why we see such a large AHE,” Ali laughingly explained.

These results may also help scientists identify other materials with this combination of ingredients. “Importantly, the same physics governing this AHE could also drive a very large spin Hall effect (SHE) – where instead of generating an orthogonal charge current, an orthogonal spin current is generated,” remarked Wang. “This is important for next-generation computing technologies based on an electron’s spin rather than its charge”.

“This is a new playground material for us: metallic Dirac physics, frustrated magnetism, exfoliatable, and chemically stable all in one. There is a lot of opportunity to explore fun, weird phenomena, like unconventional superconductivity and more,” said Ali, excitedly.

####

For more information, please click here

Contacts:
Dr. Mazhar N. Ali

Copyright © Max Planck Institute of Microstructure Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Magnetism

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Superconductivity

Atomtronic device could probe boundary between quantum, everyday worlds: Clouds of supercooled atoms offer highly sensitive rotation sensors and tests of quantum mechanics July 17th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Chip Technology

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

Quantum Computing

Atomtronic device could probe boundary between quantum, everyday worlds: Clouds of supercooled atoms offer highly sensitive rotation sensors and tests of quantum mechanics July 17th, 2020

Streamlining quantum information transmission July 17th, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

Discoveries

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Announcements

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56281

Continue Reading

Nano Technology

Tiniest secrets of integrated circuits revealed with new imaging technique

Avatar

Published

on

Home > Press > Tiniest secrets of integrated circuits revealed with new imaging technique

Abstract:
The life-givers of integrated circuits and quantum devices in silicon are small structures made from patches of foreign atoms called dopants. The dopant structures provide charge carriers that flow through the components of the circuit, giving the components their ability to function. These days the dopant structures are only a few atoms across and so need to be made in precise locations within a circuit and have very well-defined electrical properties. At present manufacturers find it hard to tell in a non-destructive way whether they have made their devices according to these strict requirements. A new imaging paradigm promises to change all that.

Tiniest secrets of integrated circuits revealed with new imaging technique


London, UK | Posted on August 5th, 2020

The imaging mode called broadband electric force microscopy, developed by Dr Georg Gramse at Keysight technologies & JKU uses a very sharp probe that sends electromagnetic waves into a silicon chip, to image and localize dopant structures underneath the surface. Dr Gramse says that because the microscope can use waves with many frequencies it can provide a wealth of previously inaccessible detail about the electrical environment around the dopant structures. The extra information is crucial to predicting how well the devices will ultimately perform.

The imaging approach was tested on two tiny dopant structures made with a templating process which is unique in achieving atomically sharp interfaces between differently doped regions. Dr Tomas Skeren at IBM produced the world’s first electronic diode (a circuit component which passes current in only one direction) fabricated with this templating process, while Dr Alex Kölker at UCL created a multilevel 3-D device with atomic scale precision.

The results, published in the journal Nature Electronics, demonstrate that the technique can take pictures and resolve as few as 200 dopant atoms even if they are hidden below the same number of Si atoms. It can tell the difference between certain flavours of dopant atoms, and can also provide information about the way charge carriers move through the structures and about atomic-sized ‘traps’ that can stop them from moving.

Professor Neil Curson, who leads the group at UCL, said: “This research could not have come at a better time for the massive world-wide effort to make smaller electronics or quantum computers in silicon. While the success in making components smaller and more complicated has been spectacular, the technology required to actually observe what is being made has not been keeping up. This has become a major problem for quality control in silicon chip manufacture and for information security, when you can’t see what’s inside the chips you are making or buying. Our new research will help solve many of these issues.”

Dr Andreas Fuhrer from IBM Research, added: “After learning to make the first tiny dopant device structures consisting of two different dopant species, boron and phosphorous, it was extremely useful to work with this international team to discover subtle details about our structures that would just not be possible in any other way.”

####

For more information, please click here

Contacts:
Rebecca Caygill
020-310-83846

@uclnews

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE”

Related News Press

News and information

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Imaging

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Scientists open new window into the nanoworld July 17th, 2020

Possible Futures

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Chip Technology

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

Discoveries

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Announcements

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Tools

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Quantum nanoscience

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56282

Continue Reading

Nano Technology

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry

Avatar

Published

on

Home > Press > Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry

The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)
The image represents atomic scale structures of different materials (carbides, nitrides, and oxides) coming out of a screen of a computer in a scientific laboratory. The computational alchemy procedure reported in article number 1800142 by Charles D. Griego, Karthikeyan Saravanan, and John A. Keith leverages a few Kohn‐Sham density functional theory calculations for high‐throughput screening of novel material catalysts with minimal computational effort. ((High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019) doi:10.1002/adts.201970010)

Abstract:
Developing catalysts for sustainable fuel and chemical production requires a kind of Goldilocks Effect – some catalysts are too ineffective while others are too uneconomical. Catalyst testing also takes a lot of time and resources. New breakthroughs in computational quantum chemistry, however, hold promise for discovering catalysts that are “just right” and thousands of times faster than standard approaches.

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry


Pittsburgh, PA | Posted on August 6th, 2020

University of Pittsburgh Associate Professor John A. Keith and his lab group at the Swanson School of Engineering are using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are “too slow” or “too expensive”, far more thoroughly and quickly than was considered possible a few years ago. Keith is also the Richard King Mellon Faculty Fellow in Energy in the Swanson School’s Department of Chemical and Petroleum Engineering.

The Keith Group’s research compilation, “Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts (DOI: 10.1149.2/2.F09202IF),” was featured this month in Interface, a quarterly magazine of The Electrochemical Society.

“For decades, catalyst development was the result of trial and error – years-long development and testing in the lab, giving us a basic understanding of how catalytic processes work. Today, computational modeling provides us with new insight into these reactions at the molecular level,” Keith explained. “Most exciting however is computational quantum chemistry, which can simulate the structures and dynamics of many atoms at a time. Coupled with the growing field of machine learning, we can more quickly and precisely predict and simulate catalytic models.”

In the article, Keith explained a three-pronged approach for predicting novel electrocatalysts: 1) analyzing hypothetical reaction paths; 2) predicting ideal electrochemical environments; and 3) high-throughput screening powered by alchemical perturbation density functional theory and machine learning. The article explains how these approaches can transform how engineers and scientists develop electrocatalysts needed for society.

“These emerging computational methods can allow researchers to be more than a thousand times as effective at discovering new systems compared to standard protocols,” Keith said. “For centuries chemistry and materials science relied on traditional Edisonian models of laboratory exploration, which bring far more failures than successes and thus a lot of wasted time and resources. Traditional computational quantum chemistry has accelerated these efforts, but the newest methods supercharge them. This helps researchers better pinpoint the undiscovered catalysts society desperately needs for a sustainable future.”

###

About John Keith

Dr. Keith is an associate professor and R. K. Mellon Faculty Fellow in Energy in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh. He obtained a BA degree from Wesleyan University (2001) and a PhD from Caltech (2007). He was an Alexander von Humboldt postdoctoral fellow at the University of Ulm (2007-2010) and later an associate research scholar at Princeton University (2010-2013). Keith is an expert in applying a wide range of computational quantum chemistry methods to understand molecular scale phenomena across broad areas of science and engineering. He has more than 65 research publications and was the recipient of a U.S. National Science Foundation CAREER award. From 2019-2020, he was funded by the U.S. and Luxembourg science foundations as a visiting researcher at the University of Luxembourg, where he studied state of the art chemical physics and atomistic machine learning methods.

####

For more information, please click here

Contacts:
Paul Kovach
412-624-0265

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Chemistry

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Possible Futures

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Discoveries

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Announcements

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Quantum nanoscience

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56283

Continue Reading
AI4 hours ago

Impacts of Artificial Intelligence in Content Writing

Publications6 hours ago

Hong Kong media tycoon Jimmy Lai arrested under security law

Cannabis6 hours ago

How to make a cannabis-infused canna-grapefruit spritz

Cannabis6 hours ago

Could Joe Biden budge on cannabis legalization?

Cannabis6 hours ago

4 weed products Weldon Angelos can’t live without

Blockchain7 hours ago

A $15K Bitcoin Likely As Price Breaks Above “Multi-Year Bullish Triangle”

Blockchain7 hours ago

Ethereum Classic Under Multiple 51% Attacks | Bitcoin News Summary Aug 10, 2020

Publications7 hours ago

Chinese Tesla rival Xpeng Motors files for New York IPO

Publications8 hours ago

U.S. health chief offers Taiwan ‘strong’ support in landmark visit

Publications8 hours ago

Stock futures mixed after Trump signs orders extending coronavirus relief

Blockchain8 hours ago

Number of Bitcoin Cash Whales Drop Following 39% Price Surge

Blockchain8 hours ago

Bitcoin Price Tackles $12,000 After Breaking Through a Key Resistance Zone

Blockchain9 hours ago

Japanese Messaging Giant LINE’s LN Token Trading on BitMax

Blockchain10 hours ago

Bitcoin Erupts Past $12,000: Here’s What Analysts Think Comes Next

Publications10 hours ago

Some office space could get permanently cut during the pandemic. Here’s how companies will cope

Blockchain11 hours ago

Here’s Why Analysts Are Expecting For Ethereum To Drop Back Towards $370

Publications12 hours ago

Pelosi slams Trump’s executive actions on coronavirus relief: ‘Absurdly unconstitutional’

Automotive12 hours ago

Hyundai launches Ioniq as a standalone brand to exclusively make electric cars

Blockchain12 hours ago

How Miners Can Hedge Their Inventory to Increase Return on Investment

Blockchain14 hours ago

Analysts Expect Chainlink (LINK) Reversal After 50% Eruption to $14

Blockchain14 hours ago

BAND Token is Now Available for Trading on Huobi Global

Publications15 hours ago

Amazon reportedly discussing using former J.C. Penney and Sears stores as fulfillment centers

Blockchain15 hours ago

DeFi has more than just yield farming to thank for the recent surge

Automotive15 hours ago

Judge denies bail for men accused of sneaking Carlos Ghosn out of Japan

Blockchain16 hours ago

What Hope Do Bears Have If Bitcoin Holds $11,500? Analyst Asks

Blockchain17 hours ago

Cardano short/medium-term price analysis: August 09

Publications17 hours ago

U.S. tops 5 million coronavirus cases as outbreak threatens America’s Midwest

Automotive18 hours ago

School buses are another coronavirus question mark

Blockchain18 hours ago

Will Bitcoin be the go-to asset during the incoming stagflation?

Cannabis18 hours ago

5 Thing You Can Do To Make Your Weeks Run Smoother

Automotive19 hours ago

Max Verstappen wins 70th Anniversary Grand Prix at Silverstone

Blockchain19 hours ago

Economic Crisis Leaves US Government Officials in State of Confusion

Blockchain19 hours ago

Litecoin short-term price analysis: 09 August

Automotive19 hours ago

This ‘Hoverboard’ can transform into a rideable 4-wheeler

Blockchain20 hours ago

Bitcoin: What to expect during institutional ‘land grab’ phase?

Blockchain20 hours ago

LINK Trading Volume Surpasses Bitcoin on Coinbase

Publications21 hours ago

While some techies flee Silicon Valley, this Waymo engineer is doubling down and running for office

Blockchain21 hours ago

Bitcoin’s price surge has depleted long-term hodlings

Blockchain22 hours ago

The Top Dice Strategies That Actually Make You Money

Cannabis22 hours ago

Stanley Brothers Face Another Setback with Final Refusal of “CW” Trademark

Trending