Zephyrnet Logo

Lightening up the nanoscale long-wavelength optoelectronics

Date:

Home > Press > Lightening up the nanoscale long-wavelength optoelectronics

a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal.  CREDIT by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu
a, Schematics of the bow-tie antenna-assisted device. b, The cross-section view of the simulated electric field intensity normalized to incident one marks the power-gain around the nanochannel at 0.3 THz electromagnetic waves. c, The scaling of electric field enhancement derived from FDTD method versus channel length and incident frequency. d, Asymmetric ultrashort channel was fabricated by tilt deposition. e, The near-field images are taken around the slit area using broadband illumination. f, Stereograph of the near-field signal.

CREDIT
by Lin Wang, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Huaizhong Xing, Mengjie Jiang, Xianbin Yu, Xiaoshuang Chen, and Wei Lu

Abstract:
Recent years have witnessed rapid development of the infrared photoelectric technology and the growth-up of the format of focal plane array, integration methods, as well as the spectral regime, and has widely implemented in fields including environmental resources exploration, military defenses, space science, and in the near future the field of artificial interconnect of things (AIoT) bench for communication and sensing of all things. However, with the diversity of the environment and the complexity of the features of hidden targets, the short-wave infrared detection is disturbed by the varying environmental conditions. Expanding the wavelength range of infrared detection to cover the electromagnetic spectrum from 30 μm to 3000 μm is of great significance for upgrading the capacity of optoelectronic system, such as all-weather monitoring, target recognition in complex conditions, remote sensing and spectroscopy, as well as security-screening. Existing infrared detection materials and devices are limited by intrinsic dark current and operating temperature, which mainly work in the wavelength below 20 μm under stringent cooling condition, and confront huge-challenges in wavelength extension in terms of refrigeration, power consumption, bulky, and difficulty in high-quality material growth. Therefore, there is an urgent requirement to explore novel materials and device structure beyond traditional routes to meet miniaturized technologies development with room temperature working capability, low-power consumption, and long-wavelength detection.

Lightening up the nanoscale long-wavelength optoelectronics


Changchun, China | Posted on May 13th, 2022

In a new paper published in Light Science & Application, a team of scientists, led by Professor Lin Wang from State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China, and co-workers have explored a topological semimetal-based photodetector for effectively capturing low-energy photons. Combining multiple detection mechanisms, they developed a hybrid Dirac semimetal photodetector with strong interaction at deep-subwavelength regime of ultrashort-channel and efficient photon-conversion led by symmetry engineering. The superior low-energy band topology of Dirac semimetal and peculiar non-equilibrium manipulation, enable the rectification of terahertz signals in the nanometric regime at room temperature. It is worth mentioning that the device possesses excellent environmental stability, and the photocurrent is efficiently generated across wide spectral regime beyond traditional optical technique. The reported method and technique will open up new possibilities for the facile realization of portable room-temperature low-photon detectors with high sensitivity, fast operation, and low NEP, which have significant advantages over the existing technologies.

The detector integrates PtSe2-class type-II Dirac semimetal as the channel material, and is fully optimized in terms of antenna structure, heterogeneous integration, and unbalanced electrodes. It has excellent detection performance for low-energy photons at room temperature, with responsivity exceeding ∼0.2 A/W and noise-equivalent power (NEP) less than ~38 pW/Hz0.5, as well as superb ambient stability. These scientists summarize the operational principle of their photodetector:

“We provide an alternative photodetecion strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe2 and its van der Waals heterostructures, based on the following three principles: (1) Our discovery reveals the achieve stronger light-matter interaction beyond the skin depth regime, which is achieved by titled self-aligned technique; (2) Spontaneous photocurrent is versatile manipulated by breaking the the symmetry of the in-plane barrier, so that the carriers can flow in one direction; (3) To suppress the dark current and achieve room temperature rectification, a PtSe2-graphene heterojunction was constructed benefiting from congenital nature of the van der Waals interaction.” Said Prof. Wang, the first author of the work.

“The asymmetrical electrodes forming the nanoscale photoactive region can funnel efficiently the low-energy photons and enable intensive field enhancement, giving rise to a Seebeck electromotive force and a preferential flow of nonequilibrium hot carriers. The maximum responsivity can reach 0.2A/W at zero bias.” they added.

“Considering the superior ambient stability and the excellent potential for scalable synthesis of PtSe2, our work opens new possibilities for the facile realization of portable room-temperature, low-photon detectors, with high sensitivity, fast operation, and low NEP, with great advantages compared to current technologies. It is expected to break through the bottleneck of traditional low-energy photon detection.” the scientists forecast.

####

For more information, please click here

Contacts:
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Office: 86-431-861-76851
Expert Contact

Lin Wang
Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Related News Press

News and information


Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022


New nanomechanical oscillators with record-low loss May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Internet-of-Things


Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021


MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021


CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy February 10th, 2021


Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics: Quantum dot logic circuits provide the long-sought building blocks for innovative devices, including printable electronics, flexible displays, and medical diagnostics October 30th, 2020

Govt.-Legislation/Regulation/Funding/Policy


On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022


Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Possible Futures


Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022


New nanomechanical oscillators with record-low loss May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Optical computing/Photonic computing


On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022


Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022

Discoveries


Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022


New nanomechanical oscillators with record-low loss May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements


Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022


New nanomechanical oscillators with record-low loss May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022


Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022


Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022


New nanomechanical oscillators with record-low loss May 13th, 2022

Military


Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022


New hardware integrates mechanical devices into quantum tech April 22nd, 2022


Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022


First integrated laser on lithium niobate chip: Research paves the way for high-powered telecommunication systems April 8th, 2022

Environment


University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022


Water processing: light helps degrade hormones: KIT researchers use polymer membranes coated with titanium dioxide for photocatalytic cleaning – results are reported in Nature Nanotechnology April 22nd, 2022


National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater April 15th, 2022


New approach can predict pollution from cooking emissions April 15th, 2022

Aerospace/Space


University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022


Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022


Turning any camera into a polarization camera: Metasurface attachment can be used with almost any optical system, from machine vision cameras to telescopes March 18th, 2022


Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records


On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022


The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Photonics/Optics/Lasers


On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022


Small microring array enables large complex-valued matrix multiplication May 13th, 2022


Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022


Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?