Zephyrnet Logo

Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation

Date:

  • 1.

    Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Google Scholar 

  • 2.

    Ohta, T. et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).

    Google Scholar 

  • 3.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    CAS  Google Scholar 

  • 4.

    Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    CAS  Google Scholar 

  • 5.

    Kopnin, N. B., Heikkilä, T. T. & Volovik, G. E. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503(R) (2011).

    Google Scholar 

  • 6.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Google Scholar 

  • 7.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS  Google Scholar 

  • 8.

    Kopnin, N. B., Ijäs, M., Harju, A. & Heikkilä, T. T. High-temperature surface superconductivity in rhombohedral graphite. Phys. Rev. B 87, 140503 (2013).

    Google Scholar 

  • 9.

    Xu, Y. & Liu, J. Graphene as transparent electrodes: fabrication and new emerging applications. Small 12, 1400–1419 (2016).

    CAS  Google Scholar 

  • 10.

    Chen, P.-A., Chiang, M.-H. & Hsu, W.-C. All-zigzag graphene nanoribbons for planar interconnect application. J. Appl. Phys. 122, 034301 (2017).

    Google Scholar 

  • 11.

    Randviir, E. P., Brownson, D. A. C. & Banks, C. E. A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014).

    CAS  Google Scholar 

  • 12.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    CAS  Google Scholar 

  • 13.

    Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    CAS  Google Scholar 

  • 14.

    Khodkov, T., Khrapach, I., Craciun, M. F. & Russo, S. Direct observation of a gate tunable band gap in electrical transport in ABC-trilayer graphene. Nano Lett. 15, 4429–4433 (2015).

    CAS  Google Scholar 

  • 15.

    Hao, Y. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016).

    CAS  Google Scholar 

  • 16.

    Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    CAS  Google Scholar 

  • 17.

    Lee, D. S. et al. Quantum Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 107, 216602 (2011).

    Google Scholar 

  • 18.

    Jhang, S. H. et al. Stacking-order dependent transport properties of trilayer graphene. Phys. Rev. B 84, 161408 (2011).

    Google Scholar 

  • 19.

    Kumar, A. et al. Integer quantum Hall effect in trilayer graphene. Phys. Rev. Lett. 107, 126806 (2011).

    CAS  Google Scholar 

  • 20.

    Nguyen, V. L. et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 28, 8177–8183 (2016).

    CAS  Google Scholar 

  • 21.

    Liu, W. et al. Controllable and rapid synthesis of high-quality and large-area Bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26, 907–915 (2014).

    Google Scholar 

  • 22.

    Takesaki, Y. et al. Highly uniform bilayer graphene on epitaxial Cu–Ni(111) alloy. Chem. Mater. 28, 4583–4592 (2016).

    CAS  Google Scholar 

  • 23.

    Chen, S. et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 11, 3519–3525 (2011).

    CAS  Google Scholar 

  • 24.

    Wu, Y. et al. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 6, 7731–7738 (2012).

    CAS  Google Scholar 

  • 25.

    Lin, T. et al. Self-regulating homogenous growth of high-quality graphene on Co–Cu composite substrate for layer control. Nanoscale 5, 5847–5853 (2013).

    CAS  Google Scholar 

  • 26.

    Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS  Google Scholar 

  • 27.

    Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotechnol. 11, 520–524 (2016).

    CAS  Google Scholar 

  • 28.

    Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008).

    CAS  Google Scholar 

  • 29.

    Que, Y. et al. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001). Appl. Phys. Lett. 107, 263101 (2015).

    Google Scholar 

  • 30.

    Sutter, P. & Sutter, E. Microscopy of graphene growth, processing, and properties. Adv. Funct. Mater. 23, 2617–2634 (2013).

    CAS  Google Scholar 

  • 31.

    Guo, H. et al. Centimeter-scale, single-crystalline, AB-stacked bilayer graphene on insulating substrates. 2D Mater. 6, 045044 (2019).

    CAS  Google Scholar 

  • 32.

    Nyakiti, L. O. et al. Bilayer graphene grown on 4H-SiC (0001) step-free mesas. Nano Lett. 12, 1749–1756 (2012).

    CAS  Google Scholar 

  • 33.

    Wang, Q. et al. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys. Condens. Matter 25, 095002 (2013).

    Google Scholar 

  • 34.

    Fang, W., Hsu, A. L., Song, Y. & Kong, J. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale 7, 20335–20351 (2015).

    CAS  Google Scholar 

  • 35.

    Xue, R., Abidi, I. H. & Luo, Z. Domain size, layer number and morphology control for graphene grown by chemical vapor deposition. Funct. Mater. Lett. 10, 1730003 (2017).

    CAS  Google Scholar 

  • 36.

    Yan, K., Peng, H., Zhou, Y., Li, H. & Liu, Z. Formation of bilayer Bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106–1110 (2011).

    CAS  Google Scholar 

  • 37.

    Liu, L. et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6, 8241–8249 (2012).

    CAS  Google Scholar 

  • 38.

    Zou, Z., Fu, L., Song, X., Zhang, Y. & Liu, Z. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett. 14, 3832–3839 (2014).

    CAS  Google Scholar 

  • 39.

    Hackley, J., Ali, D., DiPasquale, J., Demaree, J. D. & Richardson, C. J. K. Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95, 133114 (2009).

    Google Scholar 

  • 40.

    Yazdi, G., Iakimov, T. & Yakimova, R. Epitaxial graphene on SiC: a review of growth and characterization. Crystals 6, 53 (2016).

    Google Scholar 

  • 41.

    Huang, P. Y. et al. Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 12, 1081–1086 (2012).

    CAS  Google Scholar 

  • 42.

    Ruiz, I., Wang, W., George, A., Ozkan, C. S. & Ozkan, M. Silicon oxide contamination of graphene sheets synthesized on copper substrates via chemical vapor deposition. Adv. Sci. Eng. Med. 6, 1070–1075 (2014).

    CAS  Google Scholar 

  • 43.

    Ta, H. Q. et al. Stranski-Krastanov and Volmer-Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 16, 6403–6410 (2016).

    CAS  Google Scholar 

  • 44.

    Bittencourt, C. Reaction of Si(100) with silane–methane low-power plasma: SiC buffer-layer formation. J. Appl. Phys. 86, 4643–4648 (1999).

    CAS  Google Scholar 

  • 45.

    Liu, X. et al. Segregation growth of graphene on Cu–Ni alloy for precise layer control. J. Phys. Chem. C 115, 11976–11982 (2011).

    CAS  Google Scholar 

  • 46.

    Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    CAS  Google Scholar 

  • 47.

    Ni, Z. H. et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007).

    CAS  Google Scholar 

  • 48.

    Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

    CAS  Google Scholar 

  • 49.

    Liu, X.-Y. et al. Perfect strain relaxation in metamorphic epitaxial aluminum on silicon through primary and secondary interface misfit dislocation arrays. ACS Nano 12, 6843–6850 (2018).

    CAS  Google Scholar 

  • 50.

    Orlando, F. et al. Epitaxial growth of a single-domain hexagonal boron nitride monolayer. ACS Nano 8, 12063–12070 (2014).

    CAS  Google Scholar 

  • 51.

    Kim, S.-K., Jeong, S.-Y. & Cho, C.-R. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Appl. Phys. Lett. 82, 562–564 (2003).

    CAS  Google Scholar 

  • 52.

    Kato, T. et al. Simultaneous growth of two differently oriented GaN epilayers on (1 1 · 0) sapphire II. A growth model of (0 0 · 1) and (10 · 0) GaN. J. Cryst. Growth 183, 131–139 (1998).

    CAS  Google Scholar 

  • 53.

    Geng, D. et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl Acad. Sci. USA 109, 7992–7996 (2012).

    Google Scholar 

  • 54.

    Pan, Y. et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru(0001). Adv. Mater. 21, 2777–2780 (2009).

    CAS  Google Scholar 

  • 55.

    Peng, H. et al. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi- and multilayer graphene. Adv. Mater. 29, 1606741 (2017).

    Google Scholar 

  • 56.

    Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    CAS  Google Scholar 

  • 57.

    Bao, C. et al. Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy. Nano Lett. 17, 1564–1568 (2017).

    CAS  Google Scholar 

  • 58.

    Yankowitz, M., Wang, F., Lau, C. N. & LeRoy, B. J. Local spectroscopy of the electrically tunable band gap in trilayer graphene. Phys. Rev. B 87, 165102 (2013).

    Google Scholar 

  • 59.

    Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    CAS  Google Scholar 

  • 60.

    Huang, M. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020).

    CAS  Google Scholar 

  • 61.

    Ma, W. et al. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 10, 2809 (2019).

    Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-0743-0

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?