Zephyrnet Logo

Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy

Date:

image
  • Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vonderheide, R. H. CD47 blockade as another immune checkpoint therapy for cancer. Nat. Med. 21, 1122–1123 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jalil, A. R., Andrechak, J. C. & Discher, D. E. Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure–function. Antib. Ther. 3, 80–94 (2020).

    CAS 

    Google Scholar
     

  • Zhang, W. et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front. Immunol. 11, 18 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ansell, S. M. et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 27, 2190–2199 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eladl, E. et al. Role of CD47 in hematological malignancies. J. Hematol. Oncol. 13, 96 (2020).

    Article 

    Google Scholar
     

  • Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Uger, R. & Johnson, L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy. Expert Opin. Biol. Ther. 20, 5–8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, C. et al. Poly(I:C) enhances the efficacy of phagocytosis checkpoint blockade immunotherapy by inducing IL-6 production. J. Leukoc. Biol. 110, 1197–1208 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J. Immunother. Cancer 9, e002022 (2021).

    Article 

    Google Scholar
     

  • Zhang, A. L. et al. Dual targeting of CTLA-4 and CD47 on T-reg cells promotes immunity against solid tumors. Sci. Transl. Med. 13, eabg8693 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. & Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 52, 1543–1554 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, H. et al. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12, 763–769 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pazina, T. et al. Enhanced SLAMF7 homotypic interactions by elotuzumab improves NK cell killing of multiple myeloma. Cancer Immunol. Res. 7, 1633–1646 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 7, 891–899 (2022).

    Article 

    Google Scholar
     

  • Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alizadeh, D. et al. IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 11, 2248–2265 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pitter, M. R. & Zou, W. Uncovering the immunoregulatory function and therapeutic potential of the PD-1/PD-L1 axis in cancer. Cancer Res. 81, 5141–5143 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer 18, 10 (2019).

    Article 

    Google Scholar
     

  • Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages.Cell 175, 442–457.e23 (2018).

    Article 
    CAS 

    Google Scholar
     

  • von Roemeling, C. A. et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat. Commun. 11, 1508 (2020).

    Article 

    Google Scholar
     

  • Kosaka, A. et al. CD47 blockade enhances the efficacy of intratumoral STING-targeting therapy by activating phagocytes. J. Exp. Med. 218, e20200792 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Martin, G. R., Blomquist, C. M., Henare, K. L. & Jirik, F. R. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci. Rep. 9, 14281 (2019).

    Article 

    Google Scholar
     

  • Abdullah, A. et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J. Neuroinflammation 15, 323 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mathur, V. et al. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron 96, 1290–1302.e6 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. (Weinh.) 9, e2201734 (2022).


    Google Scholar
     

  • Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Salvagno, C. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat. Cell Biol. 21, 511–521 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Folate receptor α associated with triple-negative breast cancer and poor prognosis. Arch. Pathol. Lab. Med. 138, 890–895 (2014).

    Article 

    Google Scholar
     

  • Song, D. G. et al. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J. Hematol. Oncol. 9, 56 (2016).

    Article 

    Google Scholar
     

  • Aldea, M. et al. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 11, 874–899 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, C. et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liao, J. B. et al. Preservation of tumor–host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J. Immunother. Cancer 3, 16 (2015).

    Article 

    Google Scholar
     

  • Qie, Y. et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep. 6, 26269 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mosser, D. M. & Zhang, X. Activation of murine macrophages. Curr. Protoc. Immunol. 83, 14.2.1–14.2.8 (2008).

    Article 

    Google Scholar
     

  • Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Evans, B. C. et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 73, 50166 (2013).


    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?