Connect with us

Big Data

How to be a Data Scientist without a STEM degree

Published

on

How to be a Data Scientist without a STEM degree

Breaking into data science as a professional does require technical skills, a well-honed knack for problem-solving, and a willingness to swim in oceans of data. Maybe you are coming in as a career change or ready to take a new learning path in life–without having previously earned an advanced degree in a STEM field. Follow these tips to find your way into this high-demand and interesting field.


1. Learn the fundamentals of all pillars of data science

“Data Science” is a vague term—it can mean different things to different companies, and there are a plethora of skills that are relevant to data scientists.

That being said, there are a few core skills that I recommend that you learn. The following skills are pivotal for any data scientist: SQL, Python, Statistics, Machine Learning. I also recommend that you learn these skills in that order. It may sound like a lot, but it’s no different than when you had to complete 4–6 courses per semester in college!

Let’s dive into each skill.

A) SQL

SQL is the language of data and is arguably the most important skill for any data scientist. SQL is used to manipulate data, analyze data, build dashboards, build pipelines, write queries to feed into models, and the list goes on.

B) Python and Pandas

Python (or any scripting language) serves as a foundation for doing several other things like building ML models, web scraping data, building automated scripts, and so forth.

Pandas is a Python library used for data manipulation and analysis. I personally use Pandas over SQL when exploring data in a Jupyter notebook.

Below are the most useful resources I’ve used to learn Python and Pandas:

C) Statistics

Data science/machine learning is essentially a modern version of statistics. By learning statistics first, you’ll have a much easier time when it comes to learning machine learning concepts and algorithms! Even though it may seem like you’re not getting anything tangible out of the first few weeks, it will be worth it in the later weeks.

Below are the most useful resources I’ve used to learn Statistics:

D) Machine Learning

Not only is machine learning interesting and exciting, but it is also a skill that all data scientists have. It’s true that modeling makes up a small portion of a data scientist’s time, but it doesn’t take away from its importance.

Below are the most useful resources I’ve used to learn Machine Learning:

2. Complete 1–3 personal data science projects

Once you have a foundation built, the best way to accelerate your learning is by completing some data science projects. The simplest way to do it is to go on Kaggle, pick a dataset, and create a prediction model or some data visualizations. Remember that your first few projects aren’t going to be great! But what matters is how you progress over time.

Here are some data science projects that I completed in the past that you can use to get some inspiration!

While you continue to learn and practice your data science skills, there are other things that you can do to make yourself a more valuable data science candidate, and this leads to my next tip.

3. Explore unconventional opportunities for experience

The hardest part of being a data scientist is getting your first opportunity with no prior experience. However, below are several ways that you can get experience even if you don’t have experience:

Non-Profit Opportunities

Recently, I came across a resourceful article written by Susan Currie Sivek, which provides several organizations where you can find opportunities to work on real-life data science projects.

If you’re trying to find more experiences to add to your resume, I highly recommend that you check this out.

Compete in competitions

In my opinion, there’s no better way of showing that you’re ready for a data science job than to showcase your code through competitions. Kaggle hosts a variety of competitions that involve building a model to optimize a certain metric.

Two competitions that you can try right now are:

  1. Titanic: Machine Learning from Disaster
  2. House Prices: Advanced Regression Techniques

Start a blog on Medium

Yes, I’m biased, but hear me out. You’d be surprised how many data-related professionals are on Medium. They like to see informative, insightful, and interesting material. Take advantage of Medium to blog about your learnings, to explain a complex topic in simple jargon, or to walk through your data science projects!

Specifically, I recommend that you write for the publication Towards Data Science, as they currently have a follower base of almost 500,000 followers.

If you’d like some inspiration, check out my project walkthrough on Wine Quality Prediction.

4. Look for jobs similar to Data Scientist positions

I knew I would be fighting an uphill battle, especially with no previous experience as a Data Scientist. However, finding jobs similar to data scientist positions will significantly increase your chances of becoming a data scientist. The reason for this is that related jobs will give you the opportunity to work with actual data in a business setting.

You don’t need to be a Data Scientist to do ‘Data Science’ work

Here are some data science-related jobs that you can look for:

  • Business Intelligence Analyst
  • Data Analyst
  • Product Analyst
  • Growth Marketing Analyst / Marketing Analytics
  • Quantitative Analyst

In addition to the two points above, there’s one more tip that significantly improved my reputability as a data scientist.

5. Consider getting a Master’s degree in a quantitative field

Most Data Science job listings require a Master’s degree because it generally requires a high level of technical skill. If you find that you are not finding success with the two pieces of advice above, I recommend looking into a Master’s program in a quantitative field (computer science, statistics, math, analytics, etc.).

Personally, I chose to enroll in Georgia Tech’s Master of Science in Analytics program for a number of reasons:

  1. It doesn’t require a bachelor’s degree in a quantitative field.
  2. It has an online program in case you want to work and study at the same time.
  3. It costs only $10K USD for the whole program.

That being said, there are several options out there, and I highly advise that you take the time to explore all of your options before you make a decision!

Related:


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.kdnuggets.com/2021/09/data-scientist-without-stem-degree.html

Big Data

Proximity labeling: an enzymatic tool for spatial biology

Published

on

In this Forum, we highlight how cutting-edge, proximity-dependent, enzymatic labeling tools, aided by sequencing technology developments, have enabled the extraction of spatial information of proteomes, transcriptomes, genome organization, and cellular networks. We also discuss the potential applications of proximity labeling in the unexplored field of spatial biology in live systems.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00211-0?rss=yes

Continue Reading

Big Data

Synthetic biology applications of the yeast mating signal pathway

Published

on


Glossary

Central carbon metabolism (CCM)

as the main source of energy, CCM oxidizes carbon through glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle.

Chassis

a cell host or an organism for the production of biochemicals such as enzymes by introducing synthetic modules or devices into the cell.

Circuit

an assembly of biological parts that enables cells to perform logical functions, such as genetic switches, oscillators, and logic gates.

Convolutional neural network

a class of artificial neural networks with multiple building blocks that automatically and adaptively learn spatial hierarchies of features through back-propagation.

Clustered regularly interspaced short palindromic repeats (CRISPR)

a genome-editing tool in which CRISPR-associated nuclease 9 (Cas9)–guide RNA (gRNA) complexes recognize a protospacer adjacent motif through base-pairing and then cleave the target DNA,

CRISPR activation or interference (CRISPRa/i)

a tool that uses dead Cas protein and gRNA to activate or repress genes, resulting in gene upregulation or downregulation, respectively.

Cubic ternary complex model

an equilibrium model that describes the interactions between receptor and ligand. This model simulates the interactions of G proteins and receptors in both their active and inactive conformations.

G proteins

heterotrimeric G protein complexes are composed of α, β and γ subunits. Replacement of GDP by GTP in Gα causes a conformational change that dissociates the Gβγ subunits, leading to the activation of downstream signaling.

G protein-coupled receptor (GPCR)

a generic class of versatile, seven transmembrane-domain proteins that regulate a diverse array of intracellular signaling cascades in response to hormones, neurotransmitters, and other stimuli.

Karyogamy

a cascade of molecular events that finally lead to fusion of the nuclei and the formation of diploid cells.

Metabolic engineering

a new scientific field that combines multi-gene recombination technology with metabolic regulation and biochemical engineering to overproduce desired products.

Mitogen-activated protein kinases (MAPKs)

a family of serine/threonine kinases that convert extracellular signals into a diverse range of cellular responses.

Omics

studies include genomics, transcriptomics, proteomics, and metabolomics that characterize and quantify pools of biological molecules, and together give rise to the field of integrative genetics.

Oscillator

a genetic circuit where oscillation is generated by the inhibition and activation of transcriptional/translational feedback loops.

Pheromone-response element (PRE)

a cis element that is present in multiple copies in the promoters of a variety of pheromone-responsive genes; PREs interact with Ste12 to initiate the transcription of pheromone-induced genes.

Quorum sensing

a cell density-dependent phenomenon in which cells adapt their behavior by synthesizing, secreting, perceiving, and reacting to small diffusible signaling molecules termed autoinducers.

Scaffold protein

proteins that recruit other proteins to form a functional unit, thus enhancing signaling efficiency and fidelity.

Ste5ΔN-CTM

a Ste5 mutant that lacks the Gβγ-binding site because its N-terminus has been truncated; Ste5ΔN-CTM is no longer recruited to the plasma membrane following pheromone treatment.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00210-9?rss=yes

Continue Reading

Big Data

Biotechnology of functional proteins and peptides for hair cosmetic formulations

Published

on

  • New cosmetic science.

    Elsevier, 1997

    • Bouillon C.
    • Wilkinson J.

    The science of hair care.

    CRC Press, 2005

    • Pierce J.S.
    • et al.

    Characterization of formaldehyde exposure resulting from the use of four professional hair straightening products.

    J. Occup. Environ. Hyg. 2011; 8: 686-699

    • Ahmed M.B.
    • et al.

    Neurotoxic effect of lead on rats: relationship to apoptosis.

    Int. J. Health Sci. (Qassim). 2013; 7: 192-199

    • Martins M.
    • et al.

    α-Chymotrypsin catalysed oligopeptide synthesis for hair modelling.

    J. Clean. Prod. 2019; 237117743

    • Tinoco A.
    • et al.

    Fusion proteins with chromogenic and keratin binding modules.

    Sci. Rep. 2019; 9: 14044

    • Cruz C.F.
    • et al.

    Peptide–protein interactions within human hair keratins.

    Int. J. Biol. Macromol. 2017; 101: 805-814

    • Sajna K.V.
    • et al.

    White biotechnology in cosmetics.

    in: Pandey A. Industrial biorefineries and white biotechnology. Elsevier, 2015: 607-652

  • Role of protein in cosmetics.

    Clin. Dermatol. 2008; 26: 321-325

  • Yoshioka, I. and Kamimura, Y. Seiwa Kasei Co. Ltd. Keratin hydrolyzate useful as hair fixatives, US4279996.

  • Fahnestock, S.R. and Schultz, T.M. EI Du Pont de Nemours and Company. Water-soluble silk proteins compositions for skin care, hair care or hair coloring, US7060260B2.

  • Detert, M. et al. Beiersdorf AG. Hair styling preparations with special protein hydrolysates, EP1878423A2.

    • Barba C.
    • et al.

    Restoring important hair properties with wool keratin proteins and peptides.

    Fibers Polym. 2010; 11: 1055-1061

    • Fernandes M.M.
    • et al.

    Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair.

    Int. J. Cosmet. Sci. 2012; : 338-346

    • Ribeiro A.
    • et al.

    Potential of human γD-crystallin for hair damage repair: insights into the mechanical properties and biocompatibility.

    Int. J. Cosmet. Sci. 2013; 35: 458-466

  • Ross, V.M. Further preparations of silk proteins, seed oils, monosaccharide, natural botanicals and polysaccharide mixtures in compositions for hair care or hair repair, and skin care and topical treatments, US9023404B2.

    • Cruz C.F.
    • et al.

    Effect of a peptide in cosmetic formulations for hair volume control.

    Int. J. Cosmet. Sci. 2017; 39: 600-609

  • Edman, W.W. and Klemm, E.J. Shiseido Co. Ltd. Permanent waving compositions, US4798722.

  • Lang, G. et al. LOreal SA. Cosmetic temporary coloring compositions containing protein derivatives, US5192332.

  • Tomita, M. et al. Iwase Cosfa Co. Ltd, Morinaga Milk Industry Co. Ltd. Milk-protein hydrolyzates and compositions for use as hair and skin treating agent, US5314783.

  • Igarashi, S. et al. Kanebo Ltd. Hair coloring composition comprising anti-hair antibodies immobilized on coloring materials, and hair coloring methods, US5597386.

  • Oshika, M. and Naito, S. Kao Corp. Acylated silk proteins for hair care, US5747015.

  • Shah, S.M. Johnson and Johnson Consumer Inc. Heat-safe hair preparation and method of using same, US6156295.

  • Cannell, D. and Nguyen, N. LOreal SA. Composition for treating hair against chemical and photo damage, US6013250.

  • Schultz, T.M. and Tran, H.T. EI Du Pont de Nemours and Company. Modified soy proteins in personal care compositions, US2005/0008604A1.

    • Isnard M.D.
    • et al.

    Development of hair care formulations based on natural ingredients.

    Int. J. Phytocosmet. Nat. Ingred. 2019; 6: 9

    • Tinoco A.
    • et al.

    Keratin-based particles for protection and restoration of hair properties.

    Int. J. Cosmet. Sci. 2018; 40: 408-419

    • Tinoco A.
    • et al.

    Keratin:Zein particles as vehicles for fragrance release on hair.

    Ind. Crop. Prod. 2021; 159113067

    • Camargo Jr., F.B.
    • et al.

    Prevention of chemically induced hair damage by means of treatment based on proteins and polysaccharides.

    J. Cosmet. Dermatol. 2021; ()

    • Malinauskyte E.
    • et al.

    Penetration of different molecular weight hydrolysed keratins into hair fibres and their effects on the physical properties of textured hair.

    Int. J. Cosmet. Sci. 2021; 43: 26-37

    • Cavallaro G.
    • et al.

    Halloysite/keratin nanocomposite for human hair photoprotection coating.

    ACS Appl. Mater. Interfaces. 2020; 12: 24348-24362

    • Baus R.A.
    • et al.

    Strategies for improved hair binding: keratin fractions and the impact of cationic substructures.

    Int. J. Biol. Macromol. 2020; 160: 201-211

  • Cetintas, S. New hair botox material and the method to apply this material to hair, US2020/0197287A1.

    • Basit A.
    • et al.

    Health improvement of human hair and their reshaping using recombinant keratin K31.

    Biotechnol. Rep. 2018; 20e00288

    • Schulze Zur Wiesche E.
    • et al.

    Prevention of hair surface aging.

    J. Cosmet. Sci. 2011; 62: 237-249

    • Daithankar A.V.
    • et al.

    Moisturizing efficiency of silk protein hydrolysate: silk fibroin.

    Indian J. Biotechnol. 2005; 4: 115-121

    • Fernandes M.
    • Cavaco-Paulo A.

    Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair.

    Biocatal. Biotransform. 2012; 30: 10-19

    • Tinoco A.
    • et al.

    Crystallin fusion proteins improve the thermal properties of hair.

    Front. Bioeng. Biotechnol. 2019; 7: 298

    • Wistow G.
    • et al.

    Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens βγ-crystallins.

    Nature. 1985; 315: 771-773

  • Azizova, M. et al. Henkel IP and Holding GmbH. Hair treatment composition with naturally-derived peptide identical to human hair, US9505820B2.

    • Cruz C.F.
    • et al.

    Changing the shape of hair with keratin peptides.

    RSC Adv. 2017; 7: 51581-51592

  • Hawkins, G. et al. ELC Management LLC. Compositions and methods for permanent straightening of hair, US9011828B2.

  • Dimotakis, E. et al. LOreal SA. Hair cosmetic and styling compositions based on maleic acid copolymers and polyamines, US2013/0309190A1.

    • Song K.
    • et al.

    Effects of chemical structures of polycarboxylic acids on molecular and performance manipulation of hair keratin Kaili.

    RSC Adv. 2016; 6: 58594-58603

    • Qin X.
    • et al.

    Enzyme-triggered hydrogelation via self-assembly of alternating peptides.

    Chem. Commun. (Camb.). 2013; 49: 4839-4841

    • Yazawa K.
    • Numata K.

    Recent advances in chemoenzymatic peptide syntheses.

    Molecules. 2014; 19: 13755-13774

  • Savaides, A. and Tasker, R. Zotos International Inc. Formulations and methods for straightening and revitalizing hair, US2014/0261518A1.

  • Anthony, M.M. Copomon Enterprises LLC, Keratin Holdings LLC. Method of preparing a hair treatment formulation comprising nanoparticles in solution and method of hair treatment utilizing a treatment formulation comprising nanoparticles in solution, US9078818B1.

  • Chahal, S.P. et al. Croda International PLC. Protein-acrylate copolymer and hair conditioning product comprising said polymer, US9421159B2.

  • Huang, X. et al. EI Du Pont de Nemours and Company. Peptide-based conditioners and colorants for hair, skin and nails, US7220405B2.

  • Slusarewiez, P. Unilever Home and Personal Care USA. Method of coloring hair, US6773462B2.

  • Benson, R.E. et al. EI Du Pont de Nemours and Company, Affinergy LLC. Hair binding peptides and peptide-based hair reagents for personal care, US8273337B2.

  • Chung, Y.J. et al. Peptide exhibiting hair growth promoting activity and/or melanin production promoting activity and use thereof, US10344061B2.

  • Vickers, E.R. Clinical Stem Cells Pty Ltd. Peptides for hair growth, US2019/0091494A1.

    • Günay K.A.
    • et al.

    Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair.

    ACS Appl. Mater. Interfaces. 2017; 9: 24238-24249

    • Bolduc C.
    • Shapiro J.

    Hair care products: waving, straightening, conditioning, and coloring.

    Clin. Dermatol. 2001; 19: 431-436

    • Dias M.F.R.G.

    Hair cosmetics: an overview.

    Int. J. Trichol. 2015; 7: 2

    • Barba C.
    • et al.

    Effect of wool keratin proteins and peptides on hair water sorption kinetics.

    J. Therm. Anal. Calorim. 2010; 102: 43-48

    • Villa A.L.V.
    • et al.

    Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber.

    BMC Biotechnol. 2013; 13: 15

    • Mancon S.
    • et al.

    Hair conditioning effect of vegetable native protein in shampoo formulations.

    Seifen Ole Fette Wachse J. 2012; 138: 38-42

    • Wang S.
    • et al.

    Modification of wheat gluten for improvement of binding capacity with keratin in hair.

    R. Soc. Open Sci. 2018; 5171216

  • Sahib, S. and Jungman, E. Aquis Hairsciences Inc. Composition for improving hair health, US2020/0069551A1.

    • Antunes E.
    • et al.

    The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data.

    RSC Adv. 2015; 5: 12365-12371

  • Hair: its structure and response to cosmetic preparations.

    Clin. Dermatol. 1996; 14: 105-112

    • Cruz C.
    • et al.

    Human hair and the impact of cosmetic procedures: a review on cleansing and shape-modulating cosmetics.

    Cosmetics. 2016; 3: 26

    • Robbins C.R.

    Chemical composition of different hair types.

    in: Chemical and physical behavior of human hair. Springer, 2012: 105-176

    • Antunes E.
    • et al.

    Insights on the mechanical behavior of keratin fibrils.

    Int. J. Biol. Macromol. 2016; 89: 477-483

    • Kutlubay Z.
    • Serdaroglu S.

    Anatomy and physiology of hair.

    in: Hair and scalp disorders. IntechOpen, 2017: 13-27

    • Harrison S.
    • Sinclair R.

    Hair colouring, permanent styling and hair structure.

    J. Cosmet. Dermatol. 2004; 2: 180-185

    • Draelos Z.D.

    Hair care: an illustrated dermatologic handbook.

    CRC Press, 2004

    • Takada K.
    • et al.

    Influence of oxidative and/or reductive treatment on human hair (I): analysis of hair-damage after oxidative and/or reductive treatment.

    J. Oleo Sci. 2003; 52: 541-548

    • Kuzuhara A.

    Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman spectroscopy.

    Biopolymers. 2006; 81: 506-514

    • Wolfram L.J.
    • et al.

    The mechanism of hair bleaching.

    J. Soc. Cosmet. Chem. 1970; 900: 875-900

    • Bagiyan G.A.
    • et al.

    Oxidation of thiol compounds by molecular oxygen in aqueous solutions.

    Russ. Chem. Bull. 2003; 52: 1135-1141

    • Blasi-Romero A.
    • et al.

    In vitro investigation of thiol-functionalized cellulose nanofibrils as a chronic wound environment modulator.

    Polymers (Basel). 2021; 13: 249

  • PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00213-4?rss=yes

    Continue Reading

    Big Data

    VW’s 9-month electric vehicle deliveries to China more than triple

    Published

    on

    FRANKFURT (Reuters) – Volkswagen’s deliveries of battery-powered electric vehicles to China more than tripled in the first nine months of the year, the carmaker said on Friday, less than two months after it flagged the need to change its e-car strategy there.

    Deliveries of battery electric vehicles (BEV) to the world’s largest car market stood at 47,200 in the January-September period, up from 15,700 in the same period last year.

    “As planned, we significantly accelerated the BEV market ramp-up in China in the third quarter, and we are on track to meet our target for the year of delivering 80,000 to 100,000 vehicles of the ID. model family,” Christian Dahlheim, head of group sales, said.

    Volkswagen Chief Executive Herbert Diess in July said the carmaker had to change its approach to how it markets its BEVs in China after first-half deliveries stood at just 18,285.

    (Reporting by Christoph Steitz; Editing by Maria Sheahan)

    Image Credit: Reuters

    PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://datafloq.com/read/vws-9-month-electric-vehicle-deliveries-china-triple/18644

    Continue Reading
    Esports5 days ago

    The best teams in Hearthstone Mercenaries

    Fintech3 days ago

    PNC cuts nearly 600 apps for BBVA conversion

    Aviation4 days ago

    Vaccine passports for overseas travel to be rolled out this week

    Esports2 days ago

    New World team share details of upcoming server transfers in Q&A

    Esports5 days ago

    How Many Chapters are in the Demon Slayer Game?

    Cyber Security3 days ago

    Spotify Web Player

    AI4 days ago

    When to Contact an Attorney After a Car Accident

    Payments3 days ago

    Everyone is building a wallet

    Esports3 days ago

    How TFT Set 6 Hextech Augments work: full list and updates

    AI4 days ago

    5 Ways to Attract Clients with Law Firm SEO

    Automotive3 days ago

    This Toyota Mirai 1:10 Scale RC Car Actually Runs On Hydrogen

    Esports5 days ago

    Demon Slayer: Kimetsu no Yaiba – The Hinokami Chronicles Character Tier List

    Esports4 days ago

    The 10 Legends of Runeterra characters most likely to turn into League champions

    Blockchain5 hours ago

    The Most Profitable Cryptocurrencies on the Market

    Low_Car33ElfynEvansScott-Martin.jpg
    Automotive3 days ago

    Evans and TOYOTA GAZOO Racing Seal Second in Spain

    Cleantech4 days ago

    US & Denmark Unveil Big Plans For Wind Power

    Supply Chain4 days ago

    Top 10 hydraulic cylinder manufacturers in China

    Esports3 days ago

    How to play Scream Deathmatch Game Mode in Call of Duty: Black Ops Cold War

    Energy2 days ago

    People’s Daily Online: uma pesquisa do Instituto de Zoologia de Kumming mostrou um aumento estável da população de pavões verdes, uma espécie ameaçada de extinção

    Esports5 days ago

    Only 6,900 pick’ems remain perfect after group B’s second round-robin at the 2021 World Championship

    Trending