Zephyrnet Logo

High-energy quasiparticle injection into mesoscopic superconductors

Date:

  • 1.

    Levine, J. L. & Hsieh, S. Y. Recombination time of quasiparticles in superconducting aluminum. Phys. Rev. Lett. 20, 994–997 (1968).

    CAS  Article  Google Scholar 

  • 2.

    Smith, L. N. & Mochel, J. M. Phonon and quasiparticle dynamics in superconducting aluminum tunnel junctions. Phys. Rev. Lett. 35, 1597–1600 (1975).

    CAS  Article  Google Scholar 

  • 3.

    Ullom, J. N., Fisher, P. A. & Nahum, M. Measurements of quasiparticle thermalization in a normal metal. Phys. Rev. B 61, 14839–14843 (2000).

    CAS  Article  Google Scholar 

  • 4.

    Barends, R. et al. Quasiparticle relaxation in optically excited high-Q superconducting resonators. Phys. Rev. Lett. 100, 257002 (2008).

    CAS  Article  Google Scholar 

  • 5.

    Patel, U., Pechenezhskiy, I. V., Plourde, B. L. T., Vavilov, M. G. & McDermott, R. Phonon-mediated quasiparticle poisoning of superconducting microwave resonators. Phys. Rev. B 96, 220501 (2017).

    Article  Google Scholar 

  • 6.

    De Simoni, G., Paolucci, F., Solinas, P., Strambini, E. & Giazotto, F. Metallic supercurrent field-effect transistor. Nat. Nanotechnol. 13, 802–805 (2018).

    Article  Google Scholar 

  • 7.

    Buck, D. A. The cryotron—a superconductive computer component. Proc. IEEE 44, 482–493 (1956).

    Google Scholar 

  • 8.

    Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Article  Google Scholar 

  • 9.

    Likharev, K. K. & Semenov, V. K. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1, 3–28 (1991).

    Article  Google Scholar 

  • 10.

    McCaughan, A. N. & Berggren, K. K. A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14, 5748–5753 (2014).

    CAS  Article  Google Scholar 

  • 11.

    Gray, K. E. A superconducting transistor. Appl. Phys. Lett. 32, 392–395 (1978).

    CAS  Article  Google Scholar 

  • 12.

    Bøttcher, C. G. L. et al. Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array. Nat. Phys. 14, 1138–1144 (2018).

    Article  Google Scholar 

  • 13.

    Casparis, L. et al. Superconducting gatemon qubit based on a proximitized two-dimensional electron gas. Nat. Nanotechnol. 13, 915–919 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Glover, R. E. & Sherrill, M. D. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5, 248–250 (1960).

    CAS  Article  Google Scholar 

  • 15.

    Wolf, E. L. Principles of Electron Tunneling Spectroscopy 2nd edn (Oxford University Press, 2012).

  • 16.

    Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 584, 551–556 (2020).

    Article  Google Scholar 

  • 18.

    Li, L., Frunzio, L., Wilson, C. M. & Prober, D. E. Quasiparticle nonequilibrium dynamics in a superconducting Ta film. J. Appl. Phys. 93, 1137–1141 (2003).

    CAS  Article  Google Scholar 

  • 19.

    Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Hauser, J. J. Enhancement of superconductivity in aluminum films. Phys. Rev. B 3, 1611–1616 (1971).

    Article  Google Scholar 

  • 21.

    Worledge, D. C. & Geballe, T. H. Maki analysis of spin-polarized tunneling in an oxide ferromagnet. Phys. Rev. B 62, 447–451 (2000).

    CAS  Article  Google Scholar 

  • 22.

    Abrikosov, A. A. & Gorkov, L. P. Contribution to the theory of superconducting alloys with paramagnetic impurities. JETP Lett. 39, 1781 (1960).

    CAS  Google Scholar 

  • 23.

    Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).

  • 24.

    Meservey, R. & Tedrow, P. M. Properties of very thin aluminum films. J. Appl. Phys. 42, 51–53 (1971).

    CAS  Article  Google Scholar 

  • 25.

    Bi, C. et al. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113, 267202 (2014).

    Article  Google Scholar 

  • 26.

    Kumar, P. et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices. Phys. Rev. Appl. 6, 041001 (2016).

    Article  Google Scholar 

  • 27.

    Jensen, K. Introduction to the Physics of Electron Emission (John Wiley, 2018).

  • 28.

    Hsieh, S. Y. & Levine, J. L. Diffusion of quasiparticles in superconducting aluminum films. Phys. Rev. Lett. 20, 1502–1504 (1968).

    CAS  Article  Google Scholar 

  • 29.

    Blackford, B. L. A tunneling investigation of energy-gap anisotropy in superconducting bulk aluminum crystals. J. Low Temp. Phys. 23, 43–52 (1976).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00834-8

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?