Zephyrnet Logo

Graphene-Adsorbate van der Waals bonding memory inspires ‘smart’ graphene sensors

Date:

Home > Press > Graphene-Adsorbate van der Waals bonding memory inspires ‘smart’ graphene sensors

(a) Adsorbed CO2 molecules on graphene sensor (b) van der Waals (vdW) interaction between adsorbed molecules and graphene at zero electric field (c) vdW interaction between adsorbed molecules and graphene with electric field. CREDIT
JAIST
(a) Adsorbed CO2 molecules on graphene sensor (b) van der Waals (vdW) interaction between adsorbed molecules and graphene at zero electric field (c) vdW interaction between adsorbed molecules and graphene with electric field. CREDIT
JAIST

Abstract:
Monolayer graphene, an atomic-layer thick sheet of carbon has found immense applications in diverse fields including chemical sensors, detecting single molecule adsorption events electronically. Therefore, monitoring physisorbed molecule induced changes of the electrical response of graphene has become ubiquitous in graphene based sensors. Electric field tuning of the physisorbed molecule-graphene interaction results in enhanced gas sensing due to unique electric field dependent charge-transfer between the adsorbed gas and graphene. Molecular identification in graphene sensors was predicted based on this unique electrically tunable charge-transfer, which is a signature for different adsorbed molecules. Nevertheless, to achieve molecular identification functionality in graphene sensors, an understanding of the gas adsorption/desorption events and retention of the graphene-gas molecule interaction after turning off the electric field is desired. Until now, the graphene-gas molecule bonding interactions were considered randomized by ambience thermal energy after the electric field is turned off, which is not surprising since these interactions are van der Waals (vdW) bonding and so inherently weak. Nevertheless, this assumed thermal randomization of the graphene-gas molecule vdW bonding was unverified experimentally and a major drawback towards electrically tunable charge-transfer based molecular identification in graphene gas sensors.

Graphene-Adsorbate van der Waals bonding memory inspires ‘smart’ graphene sensors


Ishikawa, Japan | Posted on July 17th, 2020

To clarify the bonding retention of adsorbed gas molecules on graphene with and without electric field tuning, Osazuwa Gabriel Agbonlahor (current doctoral student), Tomonori Imamura (graduated master’s student), Dr. Manoharan Murugananthan (Senior Lecturer), and Professor Hiroshi Mizuta of Mizuta Laboratory at the Japan Advanced Institute of Science and Technology (JAIST) monitored the time-dependent vdW interaction decay of adsorbed CO2 molecules on graphene at different electric fields. Using the electric field to tune the interaction between the adsorbed gas and graphene, the charge-transfer between the adsorbed CO2 molecules and graphene was monitored while the tuning electric field was turned on and after it was turned off. Remarkably, the graphene-gas molecule van der Waals interactions were retained hours after the electric field was turned off, demonstrating both charge-transfer and carrier scattering retention characteristic of the previously applied electric field magnitude and direction i.e. the adsorbed CO2 molecules demonstrated a ‘vdW bonding memory’. Due to this bonding memory, the charge-transfer and scattering properties of the adsorbed gas molecules on graphene can be studied hours after the electric field is turned off which is critical for identifying adsorbed molecules based on their signature charge-transfer response to an applied electric field. Furthermore, the long bonding retention time (over 2h) of these electrically tuned adsorbed molecules, sets graphene-based sensors apart as platforms for developing ‘smart’ sensors suitable for ‘beyond-sensing’ applications in memory devices and conformational switches.

####

For more information, please click here

Contacts:
Hiroshi Mizuta
81-076-151-1571

Copyright © Japan Advanced Institute of Science and Technology (JAIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Graphene/ Graphite

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the’wonder material’ graphene, it has to be combined with other materials July 10th, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Possible Futures

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Streamlining quantum information transmission July 17th, 2020

‘Blinking” crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Memory Technology

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

Discoveries

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

‘Blinking” crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Announcements

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Atomtronic device could probe boundary between quantum, everyday worlds: Clouds of supercooled atoms offer highly sensitive rotation sensors and tests of quantum mechanics July 17th, 2020

Streamlining quantum information transmission July 17th, 2020

‘Blinking” crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Scientists open new window into the nanoworld July 17th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56258

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?