Connect with us

AI

Google launches Android 11 Beta 1, Kotlin coroutines, and Jetpack updates

Avatar

Published

on

Google today launched the first Android 11 beta with final SDK and NDK APIs as well as new 10 features. The company also released Android Studio improvements (including ML model importing), Kotlin coroutines, Jetpack and Jetpack Compose updates, and a refreshed Google Play Console in beta.

If that sounds like a lot, that’s because it is. All of this would have normally been shown off at Google’s I/O developer conference, where the first Android beta typically debuts, but as you know, the event was canceled due to the coronavirus. The company then planned to host the poorly named #Android11: the Beta Launch Show in lieu, but postponed that due to widespread U.S. protests over systemic racism and police brutality.

Today, Google canceled that online developer event as well:

The global community of Android developers has always been a powerful force in shaping the direction of the Android platform; each and every voice matters to us. We have cancelled the virtual launch event to allow people to focus on important discussions around racial justice in the United States. Instead, we are releasing the Android 11 Beta today in a much different form, via short-form videos and web pages that you can consume at your own pace when the time is right for you. Millions of developers around the world build their business with Android, and we’re releasing the Beta today to continue to support these developers with the latest tools. We humbly thank those who are able to offer their feedback on this release.

Despite the delays, Google insists that Android 11 is still on schedule (the final is slated for Q3). You can download Android 11 Beta 1 now via the Android Beta Program, which lets you get early Android builds via over-the-air updates on select devices. If you have any of the previous previews, Google will also be pushing an over-the-air (OTA) update. The release includes the final SDK with system images for the Pixel 2, Pixel 2 XL, Pixel 3, Pixel 3 XL, Pixel 3a, Pixel 3a XL, Pixel 4, and Pixel 4 XL, as well as the official Android Emulator. Those eight Pixel phones are a tiny slice of the over 2.5 billion monthly active Android devices — the main reason developers are eager to see what’s new for the platform in the first place. While those are the phones Google limited the first four Android 11 developer previews to, the company is working with its OEM partners to bring Beta 1 to more devices in the coming weeks.

VB Transform 2020 Online – July 15-17. Join leading AI executives: Register for the free livestream.

Until today, Android 11 was only meant for developers. Now, Google is signaling early adopters and anyone interested in beta software can try it, give feedback, and report bugs.

Android 11 Beta 1 features

Android 11 Developer Preview 1 brought 5G experiences, people and conversations improvements, Neural Networks API 1.3, privacy and security features, Google Play System updates, app compatibility, connectivity, image and camera improvements, and low latency tweaks. DP2 built on those with foldable, call screening, and more Neural Networks API improvements. DP3 included app exit reasons updates, GWP-ASan heap analysis, Android Debug Bridge (ADB) Incremental, wireless debugging, and data access auditing. DP4 didn’t have any new features. Beta 1 builds on all that.

To make compatibility testing easier for the Beta 1 features, Google has gated most breaking changes for developers until they target Android 11. That way they won’t take effect until you explicitly change your manifest. The team also added a new UI in developer options to let you toggle many of these changes for testing.

Below are the 10 new Beta 1 features. Google has split them into three themes: People, Controls, and Privacy.

Android 11 people features

Android 11 conversations

Android 11 conversations

Android 11 is supposed to be “more people-centric and expressive” so that “the OS that can recognize and prioritize the most important people in your life.” In other words, expect a lot of messaging functionality:

  • Conversation notifications appear in a dedicated section at the top of the shade, with a people-forward design and conversation specific actions, such as opening the conversation as a bubble, creating a conversation shortcut on the home screen, or setting a reminder.
  • Bubbles help users to keep conversations in view and accessible while multitasking. Google wants messaging and chat apps to use the Bubbles API on notifications in Android 11.
  • Consolidated keyboard suggestions let Autofill apps and Input Method Editors (IMEs) securely offer context-specific entities and strings directly in an IME’s suggestion strip.
  • Voice Access, for people who control their phone entirely by voice, now includes an on-device visual cortex that understands screen content and context, and generates labels and access points for accessibility commands.

Android 11 controls features

Android 11 device controls

Android 11 device controls

Android 11 makes it easier to control your smart devices:

  • Device Controls help users access and control their connected devices. Simply long-press the power button to bring up device controls instantly. Apps can use a new API to appear in the controls.
  • Media Controls let you switch the output device for audio or video content, whether it be headphones, speakers, or even the TV. You can enable this today from Developer Options, and it will be on by default in an upcoming Beta release.

Android 11 privacy features

Android 11 privacy controls

Android 11 privacy controls

Android 11 also brings more control over sensitive permissions and keeps devices more secure through faster updates:

  • One-time permission lets you give an app access to the device microphone, camera, or location, just that one time. The app can request permissions again the next time the app is used.
  • Permissions auto-reset: If you haven’t used an app for an extended period of time, Android 11 will “auto-reset” all of the runtime permissions associated with the app and notify you. The app can request the permissions again the next time the app is used.
  • Background location: Developers need to get approval to access background location in their app to prevent misuse, but Google won’t be enforcing this previously announced policy for existing apps until 2021.
  • Google Play System Updates, launched last year, expedite updates of core OS components to devices in the Android ecosystem. Google is doubling the number of updatable modules. The 12 new modules will help improve privacy, security, and consistency for users and developers.

Android 11 beta schedule

Google launched Android 11 DP1 in February, the earliest Android developer preview it has ever released, Android 11 DP2 in March, and Android 11 DP3 in April. Android 11 Beta 1 was supposed to arrive in May, but we got Android 11 DP4 as a stopgap measure.

Android 11 beta schedule

Android 11 beta schedule

Last year, there were six betas. This year, it looks like there will be four developer previews and three betas. Here’s the Android 11 schedule:

  • February: Developer Preview 1 (Early baseline build focused on developer feedback, with new features, APIs, and behavior changes.)
  • March: Developer Preview 2 (Incremental update with additional features, APIs, and behavior changes.)
  • April: Developer Preview 3 (Incremental update for stability and performance.)
  • May: Developer Preview 4 (App compatibility and performance improvements.)
  • June: Beta 1 (Final SDK and NDK APIs; Google Play publishing open for apps targeting Android 11.)
  • July: Beta 2 (Platform Stability milestone. Final APIs and behaviors.)
  • August: Beta 3 (Release candidate build.)
  • Q3: Final release (Android 11 release to AOSP and ecosystem.)

If you haven’t started testing yet, now is the time. After you’ve downloaded Beta 1, update your Android Studio environment with the SDK (setup guide). Then install your current production app and test the user flows. For a complete rundown on what’s new, check the API overview, API reference, and behavior changes.

Android Studio, Kotlin, and Jetpack

Last month, Google launched Android Studio 4.0, the latest version of its integrated development environment (IDE). But Google already wants your help testing version 4.1 and 4.2.

Android Studio 4.1 Beta and Android Studio 4.2 Canary new features

Android Studio 4.1 Beta and Android Studio 4.2 Canary new features

Android Studio 4.1 Beta and Android Studio 4.2 Canary add the following functionality:

  • Wireless debugging over ADB, Database Inspector and Dependency Injection (Dagger) tools.
  • Android Emulator is now hosted directly inside the IDE. Tests now run side-by-side so you can see results from multiple devices at the same time. Google also improved the device manager.
  • You can now import your models for ML Kit and TensorFlow Lite directly in the IDE.
  • You can expect Kotlin Symbol Processing, caching of the task graph in Gradle, and faster app deployment to all devices on Android 11. The new build analyzer can help you diagnose where your build may have bottlenecks.
  • Updated performance profiler UI, overhauled System Trace tool, and support for native memory profiling.

Speaking of the Kotlin programming language, Google today shared that over 70% of the top 1,000 apps on Google Play are using Kotlin (up from 60% in December). Jetbrains has released Kotlin 1.4 with faster code completion, more powerful type inference enabled by default, function interfaces, mixing named, and positioning arguments.

[embedded content]

Next, Google now officially recommends Kotlin coroutines, a language feature that makes concurrent calls much easier to write and understand. The company rewrote Paging 3 to be Kotlin-first with full support for coroutines. In short, Android developers can now more easily write and read concurrent calls. Google also built coroutines support into three of the most-used Jetpack libraries: Lifecycle, WorkManager, and Room.

Speaking of Jetpack, a set of components for speeding up app development, it has two new libraries: Hilt and App Startup. The former is a developer-friendly wrapper on top of Dagger for dependency injections and the latter helps app and library developers improve app startup time by optimizing initial libraries.

Jetpack Compose meanwhile is now in Developer Preview 2 with new features and tools for developers to try: Interoperability with Views, Animations, Testing, Constraint Layout, Adapter list, Material UI components, Text, and editable Text. Google promises Jetpack Compose will launch in alpha this summer and hit version 1.0 next year.

Redesigned Google Play Console

The Google Play Console is what developers use to manage all phases of publishing their apps and games as part of their business. Google has redesigned it using Material Design, the UI design system for all Google-branded products. The console is now also responsive and supports right-to-left languages.

[embedded content]

Google says that every page on Google Play Console “has been enhanced” and that features like Pre-launch reports, Android vitals, Statistics, and Play Game Services are all now more usable. Additionally, there are new features that let you:

  • Find, discover, and understand important features.
  • Find new guidance on policy changes, release status, advice, and user feedback.
  • Better understand performance insights with new acquisition reports.
  • Inspect each of your app bundles and understand how Google Play optimizes artifacts for your users.
  • Enable everyone on your team to use Play Console features with new user management options.

Google didn’t say when the console would launch out of beta, but it wants your feedback here.

Source: http://feedproxy.google.com/~r/venturebeat/SZYF/~3/IR0o6uUp2s8/

Artificial Intelligence

Deep Learning vs Machine Learning: How an Emerging Field Influences Traditional Computer Programming

Avatar

Published

on

When two different concepts are greatly intertwined, it can be difficult to separate them as distinct academic topics. That might explain why it’s so difficult to separate deep learning from machine learning as a whole. Considering the current push for both automation as well as instant gratification, a great deal of renewed focus has been heaped on the topic.

Everything from automated manufacturing worfklows to personalized digital medicine could potentially grow to rely on deep learning technology. Defining the exact aspects of this technical discipline that will revolutionize these industries is, however, admittedly much more difficult. Perhaps it’s best to consider deep learning in the context of a greater movement in computer science.

Defining Deep Learning as a Subset of Machine Learning

Machine learning and deep learning are essentially two sides of the same coin. Deep learning techniques are a specific discipline that belong to a much larger field that includes a large variety of trained artificially intelligent agents that can predict the correct response in an equally wide array of situations. What makes deep learning independent of all of these other techniques, however, is the fact that it focuses almost exclusively on teaching agents to accomplish a specific goal by learning the best possible action in a number of virtual environments.

Traditional machine learning algorithms usually teach artificial nodes how to respond to stimuli by rote memorization. This is somewhat similar to human teaching techniques that consist of simple repetition, and therefore might be thought of the computerized equivalent of a student running through times tables until they can recite them. While this is effective in a way, artificially intelligent agents educated in such a manner may not be able to respond to any stimulus outside of the realm of their original design specifications.

That’s why deep learning specialists have developed alternative algorithms that are considered to be somewhat superior to this method, though they are admittedly far more hardware intensive in many ways. Subrountines used by deep learning agents may be based around generative adversarial networks, convolutional neural node structures or a practical form of restricted Boltzmann machine. These stand in sharp contrast to the binary trees and linked lists used by conventional machine learning firmware as well as a majority of modern file systems.

Self-organizing maps have also widely been in deep learning, though their applications in other AI research fields have typically been much less promising. When it comes to defining the deep learning vs machine learning debate, however, it’s highly likely that technicians will be looking more for practical applications than for theoretical academic discussion in the coming months. Suffice it to say that machine learning encompasses everything from the simplest AI to the most sophisticated predictive algorithms while deep learning constitutes a more selective subset of these techniques.

Practical Applications of Deep Learning Technology

Depending on how a particular program is authored, deep learning techniques could be deployed along supervised or semi-supervised neural networks. Theoretically, it’d also be possible to do so via a completely unsupervised node layout, and it’s this technique that has quickly become the most promising. Unsupervised networks may be useful for medical image analysis, since this application often presents unique pieces of graphical information to a computer program that have to be tested against known inputs.

Traditional binary tree or blockchain-based learning systems have struggled to identify the same patterns in dramatically different scenarios, because the information remains hidden in a structure that would have otherwise been designed to present data effectively. It’s essentially a natural form of steganography, and it has confounded computer algorithms in the healthcare industry. However, this new type of unsupervised learning node could virtually educate itself on how to match these patterns even in a data structure that isn’t organized along the normal lines that a computer would expect it to be.

Others have proposed implementing semi-supervised artificially intelligent marketing agents that could eliminate much of the concern over ethics regarding existing deal-closing software. Instead of trying to reach as large a customer base as possible, these tools would calculate the odds of any given individual needing a product at a given time. In order to do so, it would need certain types of information provided by the organization that it works on behalf of, but it would eventually be able to predict all further actions on its own.

While some companies are currently relying on tools that utilize traditional machine learning technology to achieve the same goals, these are often wrought with privacy and ethical concerns. The advent of deep structured learning algorithms have enabled software engineers to come up with new systems that don’t suffer from these drawbacks.

Developing a Private Automated Learning Environment

Conventional machine learning programs often run into serious privacy concerns because of the fact that they need a huge amount of input in order to draw any usable conclusions. Deep learning image recognition software works by processing a smaller subset of inputs, thus ensuring that it doesn’t need as much information to do its job. This is of particular importance for those who are concerned about the possibility of consumer data leaks.

Considering new regulatory stances on many of these issues, it’s also quickly become something that’s become important from a compliance standpoint as well. As toxicology labs begin using bioactivity-focused deep structured learning packages, it’s likely that regulators will express additional concerns in regards to the amount of information needed to perform any given task with this kind of sensitive data. Computer scientists have had to scale back what some have called a veritable fire hose of bytes that tell more of a story than most would be comfortable with.

In a way, these developments hearken back to an earlier time when it was believed that each process in a system should only have the amount of privileges necessary to complete its job. As machine learning engineers embrace this paradigm, it’s highly likely that future developments will be considerably more secure simply because they don’t require the massive amount of data mining necessary to power today’s existing operations.

Image Credit: toptal.io

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://datafloq.com/read/deep-learning-vs-machine-learning-how-emerging-field-influences-traditional-computer-programming/13652

Continue Reading

Artificial Intelligence

Extra Crunch roundup: Tonal EC-1, Deliveroo’s rocky IPO, is Substack really worth $650M?

Avatar

Published

on

For this morning’s column, Alex Wilhelm looked back on the last few months, “a busy season for technology exits” that followed a hot Q4 2020.

We’re seeing signs of an IPO market that may be cooling, but even so, “there are sufficient SPACs to take the entire recent Y Combinator class public,” he notes.

Once we factor in private equity firms with pockets full of money, it’s evident that late-stage companies have three solid choices for leveling up.

Seeking more insight into these liquidity options, Alex interviewed:

  • DigitalOcean CEO Yancey Spruill, whose company went public via IPO;
  • Latch CFO Garth Mitchell, who discussed his startup’s merger with real estate SPAC $TSIA;
  • Brian Cruver, founder and CEO of AlertMedia, which recently sold to a private equity firm.

After recapping their deals, each executive explains how their company determined which flashing red “EXIT” sign to follow. As Alex observed, “choosing which option is best from a buffet’s worth of possibilities is an interesting task.”

Thanks very much for reading Extra Crunch! Have a great weekend.

Walter Thompson
Senior Editor, TechCrunch
@yourprotagonist


Full Extra Crunch articles are only available to members
Use discount code ECFriday to save 20% off a one- or two-year subscription


The Tonal EC-1

Image Credits: Nigel Sussman

On Tuesday, we published a four-part series on Tonal, a home fitness startup that has raised $200 million since it launched in 2018. The company’s patented hardware combines digital weights, coaching and AI in a wall-mounted system that sells for $2,995.

By any measure, it is poised for success — sales increased 800% between December 2019 and 2020, and by the end of this year, the company will have 60 retail locations. On Wednesday, Tonal reported a $250 million Series E that valued the company at $1.6 billion.

Our deep dive examines Tonal’s origins, product development timeline, its go-to-market strategy and other aspects that combined to spark investor interest and customer delight.

We call this format the “EC-1,” since these stories are as comprehensive and illuminating as the S-1 forms startups must file with the SEC before going public.

Here’s how the Tonal EC-1 breaks down:

We have more EC-1s in the works about other late-stage startups that are doing big things well and making news in the process.

What to make of Deliveroo’s rough IPO debut

Why did Deliveroo struggle when it began to trade? Is it suffering from cultural dissonance between its high-growth model and more conservative European investors?

Let’s peek at the numbers and find out.

Kaltura puts debut on hold. Is the tech IPO window closing?

The Exchange doubts many folks expected the IPO climate to get so chilly without warning. But we could be in for a Q2 pause in the formerly scorching climate for tech debuts.

Is Substack really worth $650M?

A $65 million Series B is remarkable, even by 2021 standards. But the fact that a16z is pouring more capital into the alt-media space is not a surprise.

Substack is a place where publications have bled some well-known talent, shifting the center of gravity in media. Let’s take a look at Substack’s historical growth.

RPA market surges as investors, vendors capitalize on pandemic-driven tech shift

Business process organization and analytics. Business process visualization and representation, automated workflow system concept. Vector concept creative illustration

Image Credits: Visual Generation / Getty Images

Robotic process automation came to the fore during the pandemic as companies took steps to digitally transform. When employees couldn’t be in the same office together, it became crucial to cobble together more automated workflows that required fewer people in the loop.

RPA has enabled executives to provide a level of automation that essentially buys them time to update systems to more modern approaches while reducing the large number of mundane manual tasks that are part of every industry’s workflow.

E-commerce roll-ups are the next wave of disruption in consumer packaged goods

Elevated view of many toilet rolls on blue background

Image Credits: Javier Zayas Photography (opens in a new window) / Getty Images

This year is all about the roll-ups, the aggregation of smaller companies into larger firms, creating a potentially compelling path for equity value. The interest in creating value through e-commerce brands is particularly striking.

Just a year ago, digitally native brands had fallen out of favor with venture capitalists after so many failed to create venture-scale returns. So what’s the roll-up hype about?

Hack takes: A CISO and a hacker detail how they’d respond to the Exchange breach

3d Flat isometric vector concept of data breach, confidential data stealing, cyber attack.

Image Credits: TarikVision (opens in a new window) / Getty Images

The cyber world has entered a new era in which attacks are becoming more frequent and happening on a larger scale than ever before. Massive hacks affecting thousands of high-level American companies and agencies have dominated the news recently. Chief among these are the December SolarWinds/FireEye breach and the more recent Microsoft Exchange server breach.

Everyone wants to know: If you’ve been hit with the Exchange breach, what should you do?

5 machine learning essentials nontechnical leaders need to understand

Jumble of multicoloured wires untangling into straight lines over a white background. Cape Town, South Africa. Feb 2019.

Image Credits: David Malan (opens in a new window) / Getty Images

Machine learning has become the foundation of business and growth acceleration because of the incredible pace of change and development in this space.

But for engineering and team leaders without an ML background, this can also feel overwhelming and intimidating.

Here are best practices and must-know components broken down into five practical and easily applicable lessons.

Embedded procurement will make every company its own marketplace

Businesswomen using mobile phone analyzing data and economic growth graph chart. Technology digital marketing and network connection.

Image Credits: Busakorn Pongparnit / Getty Images

Embedded procurement is the natural evolution of embedded fintech.

In this next wave, businesses will buy things they need through vertical B2B apps, rather than through sales reps, distributors or an individual merchant’s website.

Knowing when your startup should go all-in on business development

One red line with arrow head breaking out from a business or finance growth chart canvas.

Image Credits: twomeows / Getty Images

There’s a persistent fallacy swirling around that any startup growing pain or scaling problem can be solved with business development.

That’s frankly not true.

Dear Sophie: What should I know about prenups and getting a green card through marriage?

lone figure at entrance to maze hedge that has an American flag at the center

Image Credits: Bryce Durbin/TechCrunch

Dear Sophie:

I’m a founder of a startup on an E-2 investor visa and just got engaged! My soon-to-be spouse will sponsor me for a green card.

Are there any minimum salary requirements for her to sponsor me? Is there anything I should keep in mind before starting the green card process?

— Betrothed in Belmont

Startups must curb bureaucracy to ensure agile data governance

Image of a computer, phone and clock on a desk tied in red tape.

Image Credits: RichVintage / Getty Images

Many organizations perceive data management as being akin to data governance, where responsibilities are centered around establishing controls and audit procedures, and things are viewed from a defensive lens.

That defensiveness is admittedly justified, particularly given the potential financial and reputational damages caused by data mismanagement and leakage.

Nonetheless, there’s an element of myopia here, and being excessively cautious can prevent organizations from realizing the benefits of data-driven collaboration, particularly when it comes to software and product development.

Bring CISOs into the C-suite to bake cybersecurity into company culture

Mixed race businesswoman using tablet computer in server room

Image Credits: Jetta Productions Inc (opens in a new window) / Getty Images

Cyber strategy and company strategy are inextricably linked. Consequently, chief information security officers in the C-Suite will be just as common and influential as CFOs in maximizing shareholder value.

How is edtech spending its extra capital?

Money tree: an adult hand reaches for dollar bills growing on a leafless tree

Image Credits: Tetra Images (opens in a new window) / Getty Images

Edtech unicorns have boatloads of cash to spend following the capital boost to the sector in 2020. As a result, edtech M&A activity has continued to swell.

The idea of a well-capitalized startup buying competitors to complement its core business is nothing new, but exits in this sector are notable because the money used to buy startups can be seen as an effect of the pandemic’s impact on remote education.

But in the past week, the consolidation environment made a clear statement: Pandemic-proven startups are scooping up talent — and fast.

Tech in Mexico: A confluence of Latin America, the US and Asia

Aerial view of crowd connected by lines

Image Credits: Orbon Alija (opens in a new window)/ Getty Images

Knowledge transfer is not the only trend flowing in the U.S.-Asia-LatAm nexus. Competition is afoot as well.

Because of similar market conditions, Asian tech giants are directly expanding into Mexico and other LatAm countries.

How we improved net retention by 30+ points in 2 quarters

Sparks coming off US dollar bill attached to jumper cables

Image Credits: Steven Puetzer (opens in a new window) / Getty Images

There’s certainly no shortage of SaaS performance metrics leaders focus on, but NRR (net revenue retention) is without question the most underrated metric out there.

NRR is simply total revenue minus any revenue churn plus any revenue expansion from upgrades, cross-sells or upsells. The greater the NRR, the quicker companies can scale.

5 mistakes creators make building new games on Roblox

BRAZIL - 2021/03/24: In this photo illustration a Roblox logo seen displayed on a smartphone. (Photo Illustration by Rafael Henrique/SOPA Images/LightRocket via Getty Images)

Image Credits: SOPA Images (opens in a new window) / Getty Images

Even the most experienced and talented game designers from the mobile F2P business usually fail to understand what features matter to Robloxians.

For those just starting their journey in Roblox game development, these are the most common mistakes gaming professionals make on Roblox.

CEO Manish Chandra, investor Navin Chaddha explain why Poshmark’s Series A deck sings

CEO Manish Chandra, investor Navin Chaddha explain why Poshmark’s Series A deck sings image

“Lead with love, and the money comes.” It’s one of the cornerstone values at Poshmark. On the latest episode of Extra Crunch Live, Chandra and Chaddha sat down with us and walked us through their original Series A pitch deck.

Will the pandemic spur a smart rebirth for cities?

New versus old - an old brick building reflected in windows of modern new facade

Image Credits: hopsalka (opens in a new window) / Getty Images

Cities are bustling hubs where people live, work and play. When the pandemic hit, some people fled major metropolitan markets for smaller towns — raising questions about the future validity of cities.

But those who predicted that COVID-19 would destroy major urban communities might want to stop shorting the resilience of these municipalities and start going long on what the post-pandemic future looks like.

The NFT craze will be a boon for lawyers

3d rendering of pink piggy bank standing on sounding block with gavel lying beside on light-blue background with copy space. Money matters. Lawsuit for money. Auction bids.

Image Credits: Gearstd (opens in a new window) / Getty Images

There’s plenty of uncertainty surrounding copyright issues, fraud and adult content, and legal implications are the crux of the NFT trend.

Whether a court would protect the receipt-holder’s ownership over a given file depends on a variety of factors. All of these concerns mean artists may need to lawyer up.

Viewing Cazoo’s proposed SPAC debut through Carvana’s windshield

It’s a reasonable question: Why would anyone pay that much for Cazoo today if Carvana is more profitable and whatnot? Well, growth. That’s the argument anyway.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://techcrunch.com/2021/04/02/extra-crunch-roundup-tonal-ec-1-deliveroos-rocky-ipo-is-substack-really-worth-650m/

Continue Reading

AI

What did COVID do to all our models?

Avatar

Published

on

What did COVID do to all our models?

An interview with Dean Abbott and John Elder about change management, complexity, interpretability, and the risk of AI taking over humanity.


By Heather Fyson, KNIME

What did COVID do to all our models?

After the KNIME Fall Summit, the dinosaurs went back home… well, switched off their laptops. Dean Abbott and John Elder, longstanding data science experts, were invited to the Fall Summit by Michael to join him in a discussion of The Future of Data Science: A Fireside Chat with Industry Dinosaurs. The result was a sparkling conversation about data science challenges and new trends. Since switching off the studio lights, Rosaria has distilled and expanded some of the highlights about change management, complexity, interpretability, and more in the data science world. Let’s see where it brought us.

What is your experience with change management in AI, when reality changes and models have to be updated? What did COVID do to all our models?

 
[Dean] Machine Learning (ML) algorithms assume consistency between past and future. When things change, the models fail. COVID has changed our habits, and therefore our data. Pre-COVID models struggle to deal with the new situation.

[John] A simple example would be the Traffic layer on Google Maps. After lockdowns hit country after country in 2020, Google Maps traffic estimates were very inaccurate for a while. It had been built on fairly stable training data but now that system was thrown completely out of whack.

How do you figure out when the world has changed and the models don’t work anymore?

 
[Dean] Here’s a little trick I use: I partition my data by time and label records as “before” and “after”. I then build a classification model to discriminate the “after” vs. the “before” from the same inputs the model uses. If the discrimination is possible, then the “after” is different from the “before”, the world has changed, the data has changed, and the models must be retrained.

How complicated is it to retrain models in projects, especially after years of customization?

 
[John] Training models is usually the easiest step of all! The vast majority of otherwise successful projects die in the implementation phase. The greatest time is spent in the data cleansing and preparation phase. And the most problems are missed or made in the business understanding / project definition phase. So if you understand what the flaw is and can obtain new data and have the implementation framework in place, creating a new model is, by comparison, very straightforward.

Based on your decades-long experience, how complex is it to put together a really functioning Data Science application?

 
[John] It can vary of course, by complexity. Most of our projects get functioning prototypes at least in a few months. But for all, I cannot stress enough the importance of feedback: You have to talk to people much more often than you want to. And listen! We learn new things about the business problem, the data, or constraints, each time. Not all us quantitative people are skilled at speaking with humans, so it often takes a team. But the whole team of stakeholders has to learn to speak the same language.

[Dean] It is important to talk to our business counterpart. People fear change and don’t want to change the current status. One key problem really is psychological. The analysts are often seen as an annoyance. So, we have to build the trust between the business counterpart and the analytics geeks. The start of a project should always include the following step: Sync up domain experts / project managers, the analysts, and the IT and infrastructure (DevOps) team so everyone is clear on the objectives of the project and how it will be executed. Analysts are number 11 on the top 10 list of people they have to see every day! Let’s avoid embodying data scientist arrogance: “The business can’t understand us/our techniques, but we know what works best”. What we don’t understand, however, are the domains experts are actually experts in the domain we are working in! Translation of data science assumptions and approaches into language that is understood by the domain experts is key!

The latest trend now is deep learning, apparently it can solve everything. I got a question from a student lately, asking “why do we need to learn other ML algorithms if deep learning is the state of the art to solve data science problems”?

 
[Dean] Deep learning sucked a lot of the oxygen out of the room. It feels so much like the early 1990s when neural networks ascended with similar optimism! Deep Learning is a set of powerful techniques for sure, but they are hard to implement and optimize. XGBoost, Ensembles of trees, are also powerful but currently more mainstream. The vast majority of problems we need to solve using advanced analytics really don’t require complex solutions, so start simple; deep learning is overkill in these situations. It is best to use the Occam’s razor principle: if two models perform the same, adopt the simplest.

About complexity. The other trend, opposite to deep learning, is ML interpretability. Here, you greatly (excessively?) simplify the model in order to be able to explain it. Is interpretability that important?

 
[John] I often find myself fighting interpretability. It is nice, sure, but often comes at too high a cost of the most important model property: reliable accuracy. But many stakeholders believe interpretability is essential, so it becomes a barrier for acceptance. Thus, it is essential to discover what kind of interpretability is needed. Perhaps it is just knowing what the most important variables are? That’s doable with many nonlinear models. Maybe, as with explaining to credit applicants why they were turned down, one just needs to interpret outputs for one case at a time? We can build a linear approximation for a given point. Or, we can generate data from our black box model and build an “interpretable” model of any complexity to fit that data.

Lastly, research has shown that if users have the chance to play with a model – that is, to poke it with trial values of inputs and see its outputs, and perhaps visualize it – they get the same warm feelings of interpretability. Overall, trust – in the people and technology behind the model – is necessary for acceptance, and this is enhanced by regular communication and by including the eventual users of the model in the build phases and decisions of the modeling process.

[Dean] By the way KNIME Analytics Platform has a great feature to quantify the importance of the input variables in a Random Forest! The Random Forest Learner node outputs the statistics of candidate and splitting variables. Remember that, when you use the Random Forest Learner node.

There is an increase in requests for explanations of what a model does. For example, for some security classes, the European Union is demanding verification that the model doesn’t do what it’s not supposed to do. If we have to explain it all, then maybe Machine Learning is not the way to go. No more Machine Learning?

 
[Dean]  Maybe full explainability is too hard to obtain, but we can achieve progress by performing a grid search on model inputs to create something like a score card describing what the model does. This is something like regression testing in hardware and software QA. If a formal proof what models are doing is not possible, then let’s test and test and test! Input Shuffling and Target Shuffling can help to achieve a rough representation of the model behavior.

[John] Talking about understanding what a model does, I would like to raise the problem of reproducibility in science. A huge proportion of journal articles in all fields — 65 to 90% — is believed to be unreplicable. This is a true crisis in science. Medical papers try to tell you how to reproduce their results. ML papers don’t yet seem to care about reproducibility. A recent study showed that only 15% of AI papers share their code.

Let’s talk about Machine Learning Bias. Is it possible to build models that don’t discriminate?

 
[John] (To be a nerd for a second, that word is unfortunately overloaded. To “discriminate” in the ML world word is your very goal: to make a distinction between two classes.) But to your real question, it depends on the data (and on whether the analyst is clever enough to adjust for weaknesses in the data): The models will pull out of the data the information reflected therein. The computer knows nothing about the world except for what’s in the data in front of it. So the analyst has to curate the data — take responsibility for those cases reflecting reality. If certain types of people, for example, are under-represented then the model will pay less attention to them and won’t be as accurate on them going forward. I ask, “What did the data have to go through to get here?” (to get in this dataset) to think of how other cases might have dropped out along the way through the process (that is survivor bias). A skilled data scientist can look for such problems and think of ways to adjust/correct for them.

[Dean] The bias is not in the algorithms. The bias is in the data. If the data is biased, we’re working with a biased view of the world. Math is just math, it is not biased.

Will AI take over humanity?!

 
[John] I believe AI is just good engineering. Will AI exceed human intelligence? In my experience anyone under 40 believes yes, this is inevitable, and most over 40 (like me, obviously): no! AI models are fast, loyal, and obedient. Like a good German Shepherd dog, an AI model will go and get that ball, but it knows nothing about the world other than the data it has been shown. It has no common sense. It is a great assistant for specific tasks, but actually quite dimwitted.

[Dean] On that note, I would like to report two quotes made by Marvin Minsky in 1961 and 1970, from the dawn of AI, that I think describe well the future of AI.

“Within our lifetime some machines may surpass us in general intelligence” (1961)

“In three to eight years we’ll have a machine with the intelligence of a human being” (1970)

These ideas have been around for a long time. Here is one reason why AI will not solve all the problems: We’re judging its behavior based on one number, one number only! (Model error.) For example, predictions of stock prices over the next five years, predicted by building models using root mean square error as the error metric, cannot possibly paint the full picture of what the data are actually doing and severely hampers the model and its ability to flexibly uncover the patterns. We all know that RMSE is too coarse of a measure. Deep Learning algorithms will continue to get better, but we also need to get better at judging how good a model really is. So, no! I do not think that AI will take over humanity.

We have reached the end of this interview. We would like to thank Dean and John for their time and their pills of knowledge. Let’s hope we meet again soon!

About Dean Abbott and John Elder

What did COVID do to all our models Dean Abbott is Co-Founder and Chief Data Scientist at SmarterHQ. He is an internationally recognized expert and innovator in data science and predictive analytics, with three decades of experience solving problems in omnichannel customer analytics, fraud detection, risk modeling, text mining & survey analysis. Included frequently in lists of pioneering data scientists and data scientists, he is a popular keynote speaker and workshop instructor at conferences worldwide, also serving on Advisory Boards for the UC/Irvine Predictive Analytics and UCSD Data Science Certificate programs. He is the author of Applied Predictive Analytics (Wiley, 2014) and co-author of The IBM SPSS Modeler Cookbook (Packt Publishing, 2013).


What did COVID do to all our models John Elder founded Elder Research, America’s largest and most experienced data science consultancy in 1995. With offices in Charlottesville VA, Baltimore MD, Raleigh, NC, Washington DC, and London, they’ve solved hundreds of challenges for commercial and government clients by extracting actionable knowledge from all types of data. Dr. Elder co-authored three books — on practical data mining, ensembles, and text mining — two of which won “book of the year” awards. John has created data mining tools, was a discoverer of ensemble methods, chairs international conferences, and is a popular workshop and keynote speaker.


 
Bio: Heather Fyson is the blog editor at KNIME. Initially on the Event Team, her background is actually in translation & proofreading, so by moving to the blog in 2019 she has returned to her real passion of working with texts. P.S. She is always interested to hear your ideas for new articles.

Original. Reposted with permission.

Related:

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.kdnuggets.com/2021/04/covid-do-all-our-models.html

Continue Reading

AI

The AI Trends Reshaping Health Care

Avatar

Published

on

Click to learn more about author Ben Lorica.

Applications of AI in health care present a number of challenges and considerations that differ substantially from other industries. Despite this, it has also been one of the leaders in putting AI to work, taking advantage of the cutting-edge technology to improve care. The numbers speak for themselves: The global AI in health care market size is expected to grow from $4.9 billion in 2020 to $45.2 billion by 2026. Some major factors driving this growth are the sheer volume of health care data and growing complexities of datasets, the need to reduce mounting health care costs, and evolving patient needs.

Deep learning, for example, has made considerable inroads into the clinical environment over the last few years. Computer vision, in particular, has proven its value in medical imaging to assist in screening and diagnosis. Natural language processing (NLP) has provided significant value in addressing both contractual and regulatory concerns with text mining and data sharing. Increasing adoption of AI technology by pharmaceutical and biotechnology companies to expedite initiatives like vaccine and drug development, as seen in the wake of COVID-19, only exemplifies AI’s massive potential.

We’re already seeing amazing strides in health care AI, but it’s still the early days, and to truly unlock its value, there’s a lot of work to be done in understanding the challenges, tools, and intended users shaping the industry. New research from John Snow Labs and Gradient Flow, 2021 AI in Healthcare Survey Report, sheds light on just this: where we are, where we’re going, and how to get there. The global survey explores the important considerations for health care organizations in varying stages of AI adoption, geographies, and technical prowess to provide an extensive look into the state of AI in health care today.               

One of the most significant findings is around which technologies are top of mind when it comes to AI implementation. When asked what technologies they plan to have in place by the end of 2021, almost half of respondents cited data integration. About one-third cited natural language processing (NLP) and business intelligence (BI) among the technologies they are currently using or plan to use by the end of the year. Half of those considered technical leaders are using – or soon will be using – technologies for data integration, NLP, business intelligence, and data warehousing. This makes sense, considering these tools have the power to help make sense of huge amounts of data, while also keeping regulatory and responsible AI practices in mind.

When asked about intended users for AI tools and technologies, over half of respondents identified clinicians among their target users. This indicates that AI is being used by people tasked with delivering health care services – not just technologists and data scientists, as in years past. That number climbs even higher when evaluating mature organizations, or those that have had AI models in production for more than two years. Interestingly, nearly 60% of respondents from mature organizations also indicated that patients are also users of their AI technologies. With the advent of chatbots and telehealth, it will be interesting to see how AI proliferates for both patients and providers over the next few years.

In considering software for building AI solutions, open-source software (53%) had a slight edge over public cloud providers (42%). Looking ahead one to two years, respondents indicated openness to also using both commercial software and commercial SaaS. Open-source software gives users a level of autonomy over their data that cloud providers can’t, so it’s not a big surprise that a highly regulated industry like health care would be wary of data sharing. Similarly, the majority of companies with experience deploying AI models to production choose to validate models using their own data and monitoring tools, rather than evaluation from third parties or software vendors. While earlier-stage companies are more receptive to exploring third-party partners, more mature organizations are tending to take a more conservative approach.                      

Generally, attitudes remained the same when asked about key criteria used to evaluate AI solutions, software libraries or SaaS solutions, and consulting companies to work with.Although the answers varied slightly for each category,technical leaders considered no data sharing with software vendors or consulting companies, the ability to train their own models, and state-of-the art accuracy as top priorities. Health care-specific models and expertise in health care data engineering, integration, and compliance topped the list when asked about solutions and potential partners. Privacy, accuracy, and health care experience are the forces driving AI adoption. It’s clear that AI is poised for even more growth, as data continues to grow and technology and security measures improve. Health care, which can sometimes be seen as a laggard for quick adoption, is taking to AI and already seeing its significant impact. While its approach, the top tools and technologies, and applications of AI may differ from other industries, it will be exciting to see what’s in store for next year’s survey results.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.dataversity.net/the-ai-trends-reshaping-health-care/

Continue Reading
Esports4 days ago

Dota 2 Patch 7.29 Will Reveal a New Hero

Esports4 days ago

Best Warzone guns: the weapons you need to use in Black Ops Cold War Season 2

Fintech3 days ago

Novatti’s Ripple partnership live to The Philippines

Fintech5 days ago

Standard Chartered turbocharges digital payments proposition with investment and the merger of CurrencyFair with Assembly Payments

Blockchain4 days ago

Evil Geniuses Partner With Cryptocurrency Exchange Platform Coinbase

Blockchain5 days ago

Unternehmen gründen Crypto Council: Fidelity und Coinbase mit dabei

Esports4 days ago

Overwatch Archives event 2021: new challenges, skins, and more

Blockchain5 days ago

Bitcoin Preis Update: BTC fällt unter 59.500 USD

Cyber Security4 days ago

Fintechs are ransomware targets. Here are 9 ways to prevent it.

Blockchain4 days ago

Krypto-News Roundup 8. April

Blockchain5 days ago

Ripple Klage: CEO zeigt sich nach Anhörung positiv

Esports4 days ago

indiefoxx was just banned from Twitch again, but why?

Blockchain4 days ago

DFB bringt digitale Sammelkarten auf die Blockchain

Esports2 days ago

Dota 2 Dawnbreaker Hero Guide

Esports5 days ago

Astralis vs Gambit Esports: ESL Pro League betting analysis

Esports2 days ago

Dallas Empire escape with a win against Minnesota at the Stage 2 Major

Blockchain4 days ago

Krypto News Roundup 7. April 2021

Blockchain4 days ago

WEF-Gipfel 2021: Zukunft der Wirtschaft ist tokenisiert

Esports4 days ago

PUBG Mobile Esports Expands With New Regions & More in 2021

Fintech3 days ago

TrueLayer raises US$70m to build the world’s most valuable Open Banking network

Trending