Connect with us

Nano Technology

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York

Avatar

Published

on

Home > Press > GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York

Abstract:
GLOBALFOUNDRIES® (GF®), the global leader in feature-rich semiconductor manufacturing, announced today at an onsite event with Senate Majority Leader Chuck Schumer that it will relocate its headquarters to Malta, New York, the site of Fab 8, the company’s most advanced semiconductor manufacturing facility — as the company positions itself for growth, strengthens partnerships with customers and recruits new talent. This change is effective today.

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York


Malta, New York | Posted on April 27th, 2021

GF has invested more than $15 billion in its Fab 8 facility over the last decade to support innovation and manufacturing capacity. In 2021, the company is doubling its planned investment to expand global capacity, with $500 million targeted for Malta, NY alone.

The move from GF’s previous headquarters to its state-of-the-art fab in New York is part of the company’s commitment to address the soaring global chip demand, with a focus on semiconductor manufacturing innovation. GF will maintain a substantial presence in Santa Clara, California, in the heart of Silicon Valley, where many of GF’s leading U.S. customers and ecosystem partners are based.

“Today, GF’s Fab 8 in New York is a $15 billion advanced semiconductor manufacturing facility and one that is playing a key role in the transformation of our industry to meet rapidly accelerating demand,” said GF CEO Tom Caulfield. “As a native New Yorker, son of a NYC firefighter, and manufacturer at heart, I am personally proud to be making upstate New York GF’s new headquarters. Our amazing 3,000-person workforce, in partnership with our local, state, and federal leaders, will together build on GF’s success, solidifying the Empire State’s place as one of a few world-class semiconductor manufacturing hubs at a time when our national and economic security depends more and more on what we can make here at home.”

Caulfield added, “I would like to thank Senator Schumer for his steadfast support for GF over the years and his tireless leadership in forging a bipartisan coalition in Congress that together with the Administration fully appreciates the need for a secure and resilient domestic semiconductor supply chain. The time for the Endless Frontier Act is now, and once approved by Congress and signed into law by President Biden, GF stands ready to do our part by expanding in upstate New York and creating many more high-paying American jobs. Our ambitious goal is to double our capacity at this site in the years to come in partnership with our customers, local, state and federal governments. We can do this.”

“GlobalFoundries’ transition of its headquarters to Fab 8 in Malta is further indication of the company’s commitment to growth in New York and to the Empire State’s leadership in the semiconductor industry,” said Senate Majority Leader Chuck Schumer, who successfully passed into law new federal semiconductor manufacturing and R&D incentives in last year’s National Defense Authorization Act (NDAA). “The chips that GlobalFoundries manufactures here in Malta are critical to our national security and to our economic competitiveness across key industries. I have worked closely with GlobalFoundries over the years to look for opportunities to expand their presence in New York and I am now pushing to secure the federal funds necessary to implement programs we passed into law last year to support further expansion of domestic chip production by companies like GlobalFoundries, accelerating even more growth in the semiconductor industry across Upstate New York.”

GF company employs more than 15,000 globally with 7,000 people across the U.S., and nearly 3,000 at its Fab 8 in Malta, New York. In 2020, GF announced a land purchase option to provide additional flexibility to expand Fab 8’s footprint to support growing demand from the U.S. government and industry customers.

Semiconductor chips are more pervasive than ever, becoming one of humankind’s most vital resources, from smartphones and automobiles to technology in schools and hospitals, modern society can no longer survive without them. GF is a trusted provider to 250 customers worldwide including the US Government.

####

About GLOBALFOUNDRIES
GLOBALFOUNDRIES (GF) is one of the world’s leading semiconductor manufacturers and the only one with a truly global footprint. GF delivers feature-rich chips solutions that enable its customers to develop pervasive chips for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of its more than 250 customers across the globe. GF is owned by Mubadala Investment Company.

For more information, please click here

Contacts:
Erica McGill

GLOBALFOUNDRIES | Corporate Communications

O: 518.305.5978 | M: 518.795.5240

Copyright © GLOBALFOUNDRIES

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Openings/New facilities/Groundbreaking/Expansion

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production November 26th, 2018

Possible Futures

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Chip Technology

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Announcements

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56664

Nano Technology

A reversible Zn-metal battery

Avatar

Published

on

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.nature.com/articles/s41565-021-00908-1

Continue Reading

Nano Technology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Avatar

Published

on

  • 1.

    Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    CAS  Google Scholar 

  • 2.

    Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  Google Scholar 

  • 3.

    Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    CAS  Google Scholar 

  • 4.

    Parker, J. F. et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    CAS  Google Scholar 

  • 5.

    Zheng, J. & Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv. 7, eabe0219 (2021).

    CAS  Google Scholar 

  • 6.

    Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Ener. Env. Sci. 11, 881–892 (2018).

    CAS  Google Scholar 

  • 7.

    Bayer, M. et al. Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures. J. Electrochem. Soc. 166, A909–A914 (2019).

    CAS  Google Scholar 

  • 8.

    Higashi, S., Lee, S. W., Lee, J. S., Takechi, K. & Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016).

    Google Scholar 

  • 9.

    Zhao, Z. et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    CAS  Google Scholar 

  • 10.

    Zhang, L. et al. ZnCl2 ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019).

    Google Scholar 

  • 11.

    Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    CAS  Google Scholar 

  • 12.

    Fu, J. et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017).

    Google Scholar 

  • 13.

    Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    CAS  Google Scholar 

  • 14.

    Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    CAS  Google Scholar 

  • 15.

    Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    CAS  Google Scholar 

  • 16.

    Xie, X. et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020).

    CAS  Google Scholar 

  • 17.

    Qiu, H. et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019).

    Google Scholar 

  • 18.

    Cao, L., Li, D., Deng, T., Li, Q. & Wang, C. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292–19296 (2020).

    CAS  Google Scholar 

  • 19.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    CAS  Google Scholar 

  • 20.

    Sun, W. et al. A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    CAS  Google Scholar 

  • 21.

    Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    CAS  Google Scholar 

  • 22.

    Nie, M. et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 117, 25381–25389 (2013).

    CAS  Google Scholar 

  • 23.

    Cao, X. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    CAS  Google Scholar 

  • 24.

    Winiarski, J., Tylus, W., Winiarska, K., Szczygieł, I. & Szczygieł, B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, 1–14 (2018).

    Google Scholar 

  • 25.

    Suo, L. et al. ‘Water-in-salt’ electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Google Scholar 

  • 26.

    Chen, Y., Cao, Y., Shi, Y., Xue, Z. & Mu, T. Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis–mass spectrometry. Ind. Eng. Chem. Res. 51, 7418–7427 (2012).

    CAS  Google Scholar 

  • 27.

    Kroon, M. C., Buijs, W., Peters, C. J. & Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem. 8, 241–245 (2006).

    CAS  Google Scholar 

  • 28.

    Markevich, E. et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55, 2687–2696 (2010).

    CAS  Google Scholar 

  • 29.

    Preibisch, Y., Horsthemke, F., Winter, M., Nowak, S. & Best, A. S. Is the cation innocent? An analytical approach on the cationic decomposition behavior of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide in contact with lithium metal. Chem. Mater. https://doi.org/10.1021/acs.chemmater.9b04827 (2020).

  • 30.

    Chowdhury, F. A., Yamada, H., Higashii, T., Goto, k & Onoda, M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013).

    CAS  Google Scholar 

  • 31.

    Kortunov, P. V., Siskin, M., Paccagnini, M. & Thomann, H. CO2 reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways. Energy Fuels 30, 1223–1236 (2016).

    CAS  Google Scholar 

  • 32.

    Yi, Y. et al. Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack. Chem. Mater. 29, 8504–8512 (2017).

    Google Scholar 

  • 33.

    Nicolas, D. et al. The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Google Scholar 

  • 34.

    Cao, C.-N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besides electrode potential. Electrochim. Acta 35, 831–836 (1990).

    CAS  Google Scholar 

  • 35.

    Zhang, D., Li, L., Cao, L., Yang, N. & Huang, C. Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates. Corros. Sci. 43, 1627–1636 (2001).

    CAS  Google Scholar 

  • 36.

    McKubre, M. C. H. & Macdonald, D. D. The dissolution and passivation of zinc in concentrated aqueous hydroxide. J. Electrochem. Soc. 128, 524–530 (1981).

    CAS  Google Scholar 

  • 37.

    Parker, J. F., Ko, J. S., Rolison, D. R. & Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018).

    CAS  Google Scholar 

  • 38.

    Liu, L. et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 4, 1650–1657 (2019).

    CAS  Google Scholar 

  • 39.

    Yamamoto, N., Okuhara, T. & Nakato, T. Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. J. Mater. Chem. 11, 1858–1863 (2001).

    CAS  Google Scholar 

  • 40.

    Wang, F. et al. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018).

    CAS  Google Scholar 

  • 41.

    Horng, P., Brindza, M. R., Walker, R. A. & Fourkas, J. T. Behavior of organic liquids at bare and modified silica interfaces. J. Phys. Chem. C 114, 394–402 (2010).

    CAS  Google Scholar 

  • 42.

    Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  • 43.

    Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    CAS  Google Scholar 

  • 44.

    Zhao, Y., Schultz, N. E. & Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006).

    Google Scholar 

  • 45.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  • 46.

    Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  Google Scholar 

  • 47.

    Montgomer, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999).

    Google Scholar 

  • 48.

    Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Google Scholar 

  • 49.

    Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    CAS  Google Scholar 

  • 50.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Google Scholar 

  • 51.

    Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    CAS  Google Scholar 

  • 52.

    Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350 (1981).

    CAS  Google Scholar 

  • 53.

    Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    CAS  Google Scholar 

  • 54.

    Reed, S. K., Lanning, O. J. & Madden, P. A. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 126, 084704 (2007).

    Google Scholar 

  • 55.

    Vatamanu, J., Borodin, O. & Smith, G. D. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys. Chem. Chem. Phys. 12, 170–182 (2010).

    CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00905-4

    Continue Reading

    Nano Technology

    Epitaxial Pb on InAs nanowires for quantum devices

    Avatar

    Published

    on

  • 1.

    Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    CAS  Article  Google Scholar 

  • 3.

    Pendharkar, M. et al. Parity-preserving and magnetic field resilient superconductivity in indium antimonide nanowires with tin shells. Preprint at http://arxiv.org/abs/1912.06071 (2019).

  • 4.

    Klinovaja, J. & Loss, D. Time-reversal invariant parafermions in interacting Rashba nanowires. Phys. Rev. B 90, 045118 (2014).

    CAS  Article  Google Scholar 

  • 5.

    Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Luthi, F. et al. Evolution of nanowire transmon qubits and their coherence in a magnetic field. Phys. Rev. Lett. 120, 100502 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Tosi, L. et al. Spin-orbit splitting of Andreev states revealed by microwave spectroscopy. Phys. Rev. X 9, 011010 (2019).

    CAS  Google Scholar 

  • 8.

    Hays, M. et al. Direct microwave measurement of Andreev-bound-state dynamics in a semiconductor–nanowire Josephson junction. Phys. Rev. Lett. 121, 047001 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).

    CAS  Google Scholar 

  • 10.

    Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    CAS  Article  Google Scholar 

  • 11.

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  • 12.

    Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  • 13.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Carrad, D. J. et al. Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 32, 1908411 (2020).

    CAS  Article  Google Scholar 

  • 18.

    Bjergfelt, M. et al. Superconducting vanadium/indium–arsenide hybrid nanowires. Nanotechnology 30, 294005 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 9, 4801 (2018).

    Article  CAS  Google Scholar 

  • 20.

    Vaitiekenas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  • 22.

    Paajaste, J. et al. Pb/InAs nanowire Josephson junction with high critical current and magnetic flux focusing. Nano Lett. 15, 1803–1808 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Güsken, N. A. et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale 9, 16735–16741 (2017).

    Article  Google Scholar 

  • 24.

    Deng, M. et al. Majorana bound state in a coupled quantum-dot hybrid–nanowire system. Science 354, 1557–1562 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Sestoft, J. E. et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater. 2, 044202 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Vaitiekėnas, S. et al. Selective-area-grown semiconductor–superconductor hybrids: a basis for topological networks. Phys. Rev. Lett. 121, 147701 (2018).

    Article  Google Scholar 

  • 27.

    Aseev, P. et al. Selectivity map for molecular beam epitaxy of advanced III–V quantum nanowire networks. Nano Lett. 19, 218–227 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Kjaergaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Shabani, J. et al. Two-dimensional epitaxial superconductor–semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  CAS  Google Scholar 

  • 30.

    Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article  CAS  Google Scholar 

  • 31.

    Su, Z. et al. Andreev molecules in semiconductor nanowire double quantum dots. Nat. Commun. 8, 585 (2017).

    Article  CAS  Google Scholar 

  • 32.

    Krizek, F. et al. Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis. Nano Lett. 17, 6090–6096 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Pentcheva, R. et al. Non-Arrhenius behavior of the island density in metal heteroepitaxy: Co on Cu (001). Phys. Rev. Lett. 90, 076101 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Venables, J. & Spiller, G. in Surface Mobilities on Solid Materials (ed. Binh, V. T.) 341–404 (Springer, 1983).

  • 36.

    Vesselinov, M. I. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (World Scientific, 2016).

  • 37.

    Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 42, 399–434 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Gramich, J., Baumgartner, A. & Schönenberger, C. Subgap resonant quasiparticle transport in normal–superconductor quantum dot devices. Appl. Phys. Lett. 108, 172604 (2016).

    Article  CAS  Google Scholar 

  • 39.

    van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  CAS  Google Scholar 

  • 40.

    Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  CAS  Google Scholar 

  • 41.

    Lee, E. J. H. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  CAS  Google Scholar 

  • 42.

    Hansen, E. B., Danon, J. & Flensberg, K. Probing electron–hole components of subgap states in Coulomb blockaded Majorana islands. Phys. Rev. B 97, 041411 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Klimovskikh, I. I. et al. Spin–orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 11, 368–374 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2015).

    CAS  Article  Google Scholar 

  • 45.

    Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    CAS  Article  Google Scholar 

  • 46.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Article  Google Scholar 

  • 47.

    Reeg, C., Loss, D. & Klinovaja, J. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime. Phys. Rev. B 97, 165425 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Ménard, G. C. et al. Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nat. Commun. 10, 2587 (2019).

    Article  CAS  Google Scholar 

  • 49.

    Ruby, M., Heinrich, B. W., Pascual, J. I. & Franke, K. J. Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy. Phys. Rev. Lett. 114, 157001 (2015).

    Article  CAS  Google Scholar 

  • 50.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00900-9

    Continue Reading

    Nano Technology

    Bioorthogonal catalytic patch

    Avatar

    Published

    on

  • 1.

    Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 12, 129–137 (2016).

    CAS  Google Scholar 

  • 2.

    Bai, Y., Chen, J. & Zimmerman, S. C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev. 47, 1811–1821 (2018).

    CAS  Google Scholar 

  • 3.

    Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352–361 (2014).

    CAS  Google Scholar 

  • 4.

    Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    CAS  Google Scholar 

  • 5.

    Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    CAS  Google Scholar 

  • 6.

    Sancho-Albero, M. et al. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2, 864–872 (2019).

    CAS  Google Scholar 

  • 7.

    Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019).

    CAS  Google Scholar 

  • 8.

    Coverdale, J. P. C. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem. 10, 347–354 (2018).

    CAS  Google Scholar 

  • 9.

    Vidal, C., Tomás-Gamasa, M., Destito, P., López, F. & Mascareñas, J. L. Concurrent and orthogonal gold(i) and ruthenium(ii) catalysis inside living cells. Nat. Commun. 9, 1913 (2018).

    Google Scholar 

  • 10.

    Tomás-Gamasa, M., Martínez-Calvo, M., Couceiro, J. R. & Mascareñas, J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 7, 12538 (2016).

    Google Scholar 

  • 11.

    Wang, X. et al. Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J. Am. Chem. Soc. 141, 17133–17141 (2019).

    CAS  Google Scholar 

  • 12.

    Liu, Y. et al. Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media. J. Am. Chem. Soc. 140, 3423–3433 (2018).

    CAS  Google Scholar 

  • 13.

    Streu, C. & Meggers, E. Ruthenium-induced allylcarbamate cleavage in living cells. Angew. Chem. Int. Ed. 45, 5645–5648 (2006).

    CAS  Google Scholar 

  • 14.

    Spicer, C. D., Triemer, T. & Davis, B. G. Palladium-mediated cell-surface labeling. J. Am. Chem. Soc. 134, 800–803 (2012).

    CAS  Google Scholar 

  • 15.

    Li, J. et al. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. J. Am. Chem. Soc. 135, 7330–7338 (2013).

    CAS  Google Scholar 

  • 16.

    Völker, T., Dempwolff, F., Graumann, P. L. & Meggers, E. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed. 53, 10536–10540 (2014).

    Google Scholar 

  • 17.

    Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    CAS  Google Scholar 

  • 18.

    Yusop, R. M., Unciti-Broceta, A., Johansson, E. M. V., Sánchez-Martín, R. M. & Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 3, 239–243 (2011).

    CAS  Google Scholar 

  • 19.

    Wang, F., Zhang, Y., Du, Z., Ren, J. & Qu, X. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 9, 1209 (2018).

    Google Scholar 

  • 20.

    Weiss, J. T. et al. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 5, 3277 (2014).

    Google Scholar 

  • 21.

    Pérez-López, A. M. et al. Gold-triggered uncaging chemistry in living systems. Angew. Chem. Int. Ed. 56, 12548–12552 (2017).

    Google Scholar 

  • 22.

    Clavadetscher, J. et al. Copper catalysis in living systems and in situ drug synthesis. Angew. Chem. Int. Ed. 55, 15662–15666 (2016).

    CAS  Google Scholar 

  • 23.

    Bray, T. L. et al. Bright insights into palladium-triggered local chemotherapy. Chem. Sci. 9, 7354–7361 (2018).

    CAS  Google Scholar 

  • 24.

    Wang, F. et al. A biocompatible heterogeneous MOF–Cu catalyst for in vivo drug synthesis in targeted subcellular organelles. Angew. Chem. Int. Ed. 58, 6987–6992 (2019).

    CAS  Google Scholar 

  • 25.

    Miller, M. A. et al. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun. 8, 15906 (2017).

    CAS  Google Scholar 

  • 26.

    Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    CAS  Google Scholar 

  • 27.

    Lee, K. et al. Non-transdermal microneedles for advanced drug delivery. Adv. Drug Deliv. Rev. 165-166, 41–59 (2020).

    CAS  Google Scholar 

  • 28.

    Chen, Z., Hu, Q. & Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 51, 668–677 (2018).

    CAS  Google Scholar 

  • 29.

    Li, W. et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019).

    CAS  Google Scholar 

  • 30.

    Chen, G. et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl Acad. Sci. USA 117, 3687–3692 (2020).

    CAS  Google Scholar 

  • 31.

    Yang, S. Y. et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 4, 1702 (2013).

    Google Scholar 

  • 32.

    Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    CAS  Google Scholar 

  • 33.

    Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    CAS  Google Scholar 

  • 34.

    Wang, Z. et al. Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proc. Natl Acad. Sci. USA 117, 29512–29517 (2020).

    CAS  Google Scholar 

  • 35.

    Ye, Y. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2, eaan5692 (2017).

    Google Scholar 

  • 36.

    Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    CAS  Google Scholar 

  • 37.

    DeMuth, P. C., Garcia-Beltran, W. F., Ai-Ling, M. L., Hammond, P. T. & Irvine, D. J. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv. Funct. Mater. 23, 161–172 (2013).

    CAS  Google Scholar 

  • 38.

    Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Google Scholar 

  • 39.

    Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).

    CAS  Google Scholar 

  • 40.

    Hassan, C. M. & Peppas, N. A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33, 2472–2479 (2000).

    CAS  Google Scholar 

  • 41.

    Yang, S. et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv. Funct. Mater. 25, 4633–4641 (2015).

    CAS  Google Scholar 

  • 42.

    Samant, P. P. & Prausnitz, M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl Acad. Sci. USA 115, 4583–4588 (2018).

    Google Scholar 

  • 43.

    Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    CAS  Google Scholar 

  • 44.

    Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).

    CAS  Google Scholar 

  • 45.

    Qu, X. & Chaires, J. B. in Methods in Enzymology Vol. 321 353–369 (Academic Press, 2000).

  • 46.

    Melber, C., Keller, D. & Mangelsdorf, I. Environmental Health Criteria 226: Palladium (World Health Organization, 2002).

  • 47.

    Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    CAS  Google Scholar 

  • 48.

    Li, Y., Boone, E. & El-Sayed, M. A. Size effects of PVP−Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18, 4921–4925 (2002).

    CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00910-7

    Continue Reading
    PR Newswire5 days ago

    Polystyrene Foam Market worth $32.2 billion by 2026 – Exclusive Report by MarketsandMarkets™

    Aviation4 days ago

    What Happened To Lufthansa’s Boeing 707 Aircraft?

    Blockchain4 days ago

    Launch of Crypto Trading Team by Goldman Sachs

    Cyber Security4 days ago

    How to Become a Cryptographer: A Complete Career Guide

    Aviation3 days ago

    JetBlue Hits Back At Eastern Airlines On Ecuador Flights

    Cyber Security4 days ago

    Cybersecurity Degrees in Massachusetts — Your Guide to Choosing a School

    Ripple’s XRP Price
    Blockchain5 days ago

    Charted: Ripple (XRP) Turns Green, Here’s Why The Bulls Could Aim $2

    Cyber Security5 days ago

    How To Unblock Gambling Websites?

    Aviation4 days ago

    United Airlines Uses The Crisis To Diversify Latin American Network

    Blockchain4 days ago

    Miten tekoälyä käytetään videopeleissä ja mitä tulevaisuudessa on odotettavissa

    Blockchain5 days ago

    South America’s Largest E-Commerce Company Adds $7.8M Worth of Bitcoin to its Balance Sheet

    Blockchain5 days ago

    Bitcoin Has No Existential Threats, Says Michael Saylor

    Blockchain4 days ago

    DOGE Co-founder Reveals the Reasons Behind its Price Rise

    Cyber Security4 days ago

    U.S. and the U.K. Published Attack on IT Management Company SolarWinds

    Blockchain5 days ago

    Cardano (ADA) Staking Live on the US-Based Kraken Exchange

    Private Equity4 days ago

    This Dream Job Will Pay You to Gamble in Las Vegas on the Company’s Dime

    Blockchain3 days ago

    “Privacy is a ‘Privilege’ that Users Ought to Cherish”: Elena Nadoliksi

    Blockchain4 days ago

    SEC Chairman Says Crypto Markets Need Regulations to Prevent Fraud

    Fintech4 days ago

    The Spanish fintech Pecunpay strengthens its position as a leader in the issuance of corporate programs

    Blockchain4 days ago

    Digital Currencies to Be Part of the Future, Says CEO of Rockefeller Capital Management

    Trending