Connect with us

Nano Technology

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York

Avatar

Published

on

Home > Press > GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York

Abstract:
GLOBALFOUNDRIES® (GF®), the global leader in feature-rich semiconductor manufacturing, announced today at an onsite event with Senate Majority Leader Chuck Schumer that it will relocate its headquarters to Malta, New York, the site of Fab 8, the company’s most advanced semiconductor manufacturing facility — as the company positions itself for growth, strengthens partnerships with customers and recruits new talent. This change is effective today.

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York


Malta, New York | Posted on April 27th, 2021

GF has invested more than $15 billion in its Fab 8 facility over the last decade to support innovation and manufacturing capacity. In 2021, the company is doubling its planned investment to expand global capacity, with $500 million targeted for Malta, NY alone.

The move from GF’s previous headquarters to its state-of-the-art fab in New York is part of the company’s commitment to address the soaring global chip demand, with a focus on semiconductor manufacturing innovation. GF will maintain a substantial presence in Santa Clara, California, in the heart of Silicon Valley, where many of GF’s leading U.S. customers and ecosystem partners are based.

“Today, GF’s Fab 8 in New York is a $15 billion advanced semiconductor manufacturing facility and one that is playing a key role in the transformation of our industry to meet rapidly accelerating demand,” said GF CEO Tom Caulfield. “As a native New Yorker, son of a NYC firefighter, and manufacturer at heart, I am personally proud to be making upstate New York GF’s new headquarters. Our amazing 3,000-person workforce, in partnership with our local, state, and federal leaders, will together build on GF’s success, solidifying the Empire State’s place as one of a few world-class semiconductor manufacturing hubs at a time when our national and economic security depends more and more on what we can make here at home.”

Caulfield added, “I would like to thank Senator Schumer for his steadfast support for GF over the years and his tireless leadership in forging a bipartisan coalition in Congress that together with the Administration fully appreciates the need for a secure and resilient domestic semiconductor supply chain. The time for the Endless Frontier Act is now, and once approved by Congress and signed into law by President Biden, GF stands ready to do our part by expanding in upstate New York and creating many more high-paying American jobs. Our ambitious goal is to double our capacity at this site in the years to come in partnership with our customers, local, state and federal governments. We can do this.”

“GlobalFoundries’ transition of its headquarters to Fab 8 in Malta is further indication of the company’s commitment to growth in New York and to the Empire State’s leadership in the semiconductor industry,” said Senate Majority Leader Chuck Schumer, who successfully passed into law new federal semiconductor manufacturing and R&D incentives in last year’s National Defense Authorization Act (NDAA). “The chips that GlobalFoundries manufactures here in Malta are critical to our national security and to our economic competitiveness across key industries. I have worked closely with GlobalFoundries over the years to look for opportunities to expand their presence in New York and I am now pushing to secure the federal funds necessary to implement programs we passed into law last year to support further expansion of domestic chip production by companies like GlobalFoundries, accelerating even more growth in the semiconductor industry across Upstate New York.”

GF company employs more than 15,000 globally with 7,000 people across the U.S., and nearly 3,000 at its Fab 8 in Malta, New York. In 2020, GF announced a land purchase option to provide additional flexibility to expand Fab 8’s footprint to support growing demand from the U.S. government and industry customers.

Semiconductor chips are more pervasive than ever, becoming one of humankind’s most vital resources, from smartphones and automobiles to technology in schools and hospitals, modern society can no longer survive without them. GF is a trusted provider to 250 customers worldwide including the US Government.

####

About GLOBALFOUNDRIES
GLOBALFOUNDRIES (GF) is one of the world’s leading semiconductor manufacturers and the only one with a truly global footprint. GF delivers feature-rich chips solutions that enable its customers to develop pervasive chips for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of its more than 250 customers across the globe. GF is owned by Mubadala Investment Company.

For more information, please click here

Contacts:
Erica McGill

GLOBALFOUNDRIES | Corporate Communications

O: 518.305.5978 | M: 518.795.5240

Copyright © GLOBALFOUNDRIES

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

Quantum steering for more precise measurements April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Openings/New facilities/Groundbreaking/Expansion

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production November 26th, 2018

Possible Futures

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Chip Technology

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Announcements

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56664

Nano Technology

Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages

Avatar

Published

on

Home > Press > Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages

Vladimir Stegailov, HSE University professor CREDIT
Vladimir Stegailov
Vladimir Stegailov, HSE University professor CREDIT
Vladimir Stegailov

Abstract:
Researchers from the HSE International Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, JIHT RAS and MIPT have compared the performance of popular molecular modelling programs on GPU accelerators produced by AMD and Nvidia. In a paper published by the International Journal of High Performance Computing Applications, the scholars ported LAMMPS on the new open-source GPU technology, AMD HIP, for the first time.

Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages


Moscow, Russia | Posted on April 30th, 2021

The scholars thoroughly analysed the performance of three molecular modelling programs – LAMMPS, Gromacs and OpenMM – on GPU accelerators Nvidia and AMD with comparable peak parameters. For the tests, they used the model of ApoA1 (Apolipoprotein A1) — apolipoprotein in blood plasma, the main carrier protein of ‘good cholesterol’. They found that the performance of research calculations is influenced not only by hardware parameters, but also by software environment. It turned out that ineffective performance of AMD drivers in complicated scenarios of parallel launch of computing kernels can lead to considerable delays. Open-source solutions still have their disadvantages.

In the recently published paper, the researchers were the first to port LAMMPS on a new open-source GPU technology, AMD HIP. This developing technology looks very promising since it helps effectively use one code both on Nvidia accelerators and on new GPUs by AMD. The developed LAMMPS modification has been published as an open source and is available in the official repository: users from all over the world can use it to accelerate their calculations.

‘We thoroughly analysed and compared the GPU accelerator memory sub-systems of Nvidia Volta and AMD Vega20 architectures. I found a difference in the logics of parallel launch of GPU kernels and demonstrated it by visualizing the program profiles. Both the memory bandwidth and the latencies of different levels of GPU memory hierarchy as well as the effective parallel execution of GPU kernels — all these aspects have a major impact on the real performance of GPU programs,’ said Vsevolod Nikolskiy, HSE University doctoral student and one of the paper’s authors.

The paper’s authors argue that participation in the technological race of the contemporary microelectronics giants demonstrates an obvious trend toward greater variety of GPU acceleration technologies.

‘On the one hand, this fact is positive for end users, since it stimulates competition, growing effectiveness and the decreasing cost of supercomputers. On the other hand, it will be even more difficult to develop effective programs due to the need to consider the availability of several different types of GPU architectures and programming technologies,’ commented Vladimir Stegailov, HSE University professor. ‘Even supporting program portability for ordinary processors on different architectures (x86, Arm, POWER) is often complicated. Portability of programs between different GPU platforms is a much more complicated issue. The open-source paradigm eliminates many barriers and helps the developers of big and complicated supercomputer software.’

In 2020, the market for graphic accelerators experienced a growing deficit. The popular areas of their use are well-known: cryptocurrency mining and machine learning tasks. Meanwhile, scientific research also requires GPU accelerators for mathematical modelling of new materials and biological molecules.

‘Creating powerful supercomputers and developing fast and effective programs is how tools are prepared for solving the most complex global challenges, such as the COVID-19 pandemic. Computation tools for molecular modelling are used globally today to search for ways to fight the virus,’ said Nikolay Kondratyuk, researcher at HSE University and one of the paper’s authors.

The most important programs for mathematical modelling are developed by international teams and scholars from dozens of institutions. Development is carried out within the open-source paradigm and under free licenses. The competition of two contemporary microelectronics giants, Nvidia and AMD, has led to the emergence of a new open-source infrastructure for GPU accelerators’ programming, AMD ROCm. The open-source character of this platform gives hope for maximum portability of codes developed with its use, to supercomputers of various types. Such AMD strategy is different from Nvidia’s approach, whose CUDA technology is a closed standard.

It did not take long to see the response from the academic community. Projects of the largest new supercomputers based on AMD GPU accelerators are close to completion. The Lumi in Finland with 0.5 exaFLOPS of performance (which is similar to performance of 1,500,000 laptops!) is quickly being built. This year, a more powerful supercomputer, Frontier, is expected in the USA (1.5 exaFLOPS), and in 2023 – an even more powerful El Capitan (2 exaFLOPS) is expected.

####

For more information, please click here

Contacts:
Liudmila Mezentseva
7-926-313-2406

@HSE_eng

Copyright © HSE University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Possible Futures

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Discoveries

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Announcements

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56671

Continue Reading

Nano Technology

A silver lining for extreme electronics

Avatar

Published

on

Home > Press > A silver lining for extreme electronics

MSU researchers developed a process to create more resilient circuitry, which they demonstrated by creating a silver Spartan helmet. The circuit was designed by Jane Manfredi, an assistant professor in the College of Veterinary Medicine. Credit: Acta Materialia Inc./Elsevier
MSU researchers developed a process to create more resilient circuitry, which they demonstrated by creating a silver Spartan helmet. The circuit was designed by Jane Manfredi, an assistant professor in the College of Veterinary Medicine. Credit: Acta Materialia Inc./Elsevier

Abstract:
Tomorrow’s cutting-edge technology will need electronics that can tolerate extreme conditions. That’s why a group of researchers led by Michigan State University’s Jason Nicholas is building stronger circuits today.

A silver lining for extreme electronics


East Lansing, MI | Posted on April 30th, 2021

Nicholas and his team have developed more heat resilient silver circuitry with an assist from nickel. The team described the work, which was funded by the U.S. Department of Energy Solid Oxide Fuel Cell Program, on April 15 in the journal Scripta Materialia.

The types of devices that the MSU team is working to benefit — next-generation fuel cells, high-temperature semiconductors and solid oxide electrolysis cells — could have applications in the auto, energy and aerospace industries.

Although you can’t buy these devices off the shelf now, researchers are currently building them in labs to test in the real world, and even on other planets.

For example, NASA developed a solid oxide electrolysis cell that enabled the Mars 2020 Perseverance Rover to make oxygen from gas in the Martian atmosphere on April 22. NASA hopes this prototype will one day lead to equipment that allows astronauts to create rocket fuel and breathable air while on Mars.

To help such prototypes become commercial products, though, they’ll need to maintain their performance at high temperatures over long periods of time, said Nicholas, an associate professor in the College of Engineering.

He was drawn to this field after years of using solid oxide fuel cells, which work like solid oxide electrolysis cells in reverse. Rather than using energy to create gases or fuel, they create energy from those chemicals.

“Solid oxide fuel cells work with gases at high temperature. We’re able to electrochemically react those gases to get electricity out and that process is a lot more efficient than exploding fuel like an internal combustion engine does,” said Nicholas, who leads a lab in the Chemical Engineering and Materials Science Department.

But even without explosions, the fuel cell needs to withstand intense working conditions.

“These devices commonly operate around 700 to 800 degrees Celsius, and they have to do it for a long time — 40,000 hours over their lifetime,” Nicholas said. For comparison, that’s approximately 1,300 to 1,400 degrees Fahrenheit, or about double the temperature of a commercial pizza oven.

“And over that lifetime, you’re thermally cycling it,” Nicholas said. “You’re cooling it down and heating it back up. It’s a very extreme environment. You can have circuit leads pop off.”

Thus, one of the hurdles facing this advanced technology is rather rudimentary: The conductive circuitry, often made from silver, needs to stick better to the underlying ceramic components.

The secret to improving the adhesion, the researchers found, was to add an intermediate layer of porous nickel between the silver and the ceramic.

By performing experiments and computer simulations of how the materials interact, the team optimized how it deposited the nickel on the ceramic. And to create the thin, porous nickel layers on the ceramic in a pattern or design of their choosing, the researchers turned to screen printing.

“It’s the same screen printing that’s used to make T-shirts,” Nicholas said. “We’re just screen-printing electronics instead of shirts. It’s a very manufacturing-friendly technique.”

Once the nickel is in place, the team puts it in contact with silver that’s melted at a temperature of about 1,000 degrees Celsius. The nickel not only withstands that heat — its melting point is 1,455 degrees Celsius — but it also distributes the liquified silver uniformly over its fine features using what’s called capillary action.

“It’s almost like a tree,” Nicholas said. “A tree gets water up to its branches via capillary action. The nickel is wicking up the molten silver via the same mechanism.”

Once the silver cools and solidifies, the nickel keeps it locked onto the ceramic, even in the 700 to 800 degree Celsius heat it would face inside a solid oxide fuel cell or a solid oxide electrolysis cell. And this approach also has the potential to help other technologies, where electronics can run hot.

“There are a wide variety of electronic applications that require circuit boards that can withstand high temperatures or high power,” said Jon Debling, a technology manager with MSU Technologies, Michigan State’s tech transfer and commercialization office. “These include existing applications in automotive, aerospace, industrial and military markets, but also newer ones such as solar cells and solid oxide fuel cells.”

As a technology manager, Debling works to commercialize Spartan innovations and he’s working to help patent this process for creating tougher electronics.

“This technology is a significant improvement — in cost and temperature stability — over existing paste and vapor deposition technologies,” he said.

For his part, Nicholas remains most interested in those cutting-edge applications on the horizon, things like solid oxide fuel cells and solid oxide electrolysis cells.

“We’re working to improve their reliability here on Earth — and on Mars,” Nicholas said.

###

Also contributing to the project were Spartan engineering researchers Assistant Professor Hui-Chia Yu, Professor Timothy Hogan and Professor Thomas Bieler. Graduate student researchers on the project included Genzhi Hu, Quan Zhou, Aiswarya Bhatlawande, Jiyun Park, Robert Termuhlen and Yuxi Ma (Zhou, Bhatlawande and Ma have since graduated).

One of the project’s coleaders at Brown University, Professor Yue Qi, also has ties to MSU. She served as faculty and the inaugural associate dean of inclusion and diversity in the College of Engineering through 2020.

####

For more information, please click here

Contacts:
Caroline Brooks

@MSUnews

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Simple robots, smart algorithms April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Possible Futures

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Chip Technology

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Announcements

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Energy

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021

Automotive/Transportation

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

Izon Science launches the Exoid to transform nanoparticle measurement: The semi-automated Exoid device uses new-generation Tunable Resistive Pulse Sensing (TRPS) technology, enabling the measurement of complex nano-particle size, concentration, and charge – with unparalleled prec March 23rd, 2021

A new industry standard for batteries: ultra-clean facility for graphene nanotube dispersions March 19th, 2021

GLOBALFOUNDRIES 22FDX RF Solution Provides the Basis for Next-Gen mmWave Automotive Radar: Next-generation auto radar technology, based on GF’s 22FDX RF solution, will help make vehicles smarter and roads even safer than today March 10th, 2021

Aerospace/Space

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Fuel Cells

Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020

New imaging method views soil carbon at near-atomic scales December 25th, 2020

Safe space: improving the “clean” methanol fuel cells using a protective carbon shell: Scientists encapsulate catalyst in a protective molecular sieve that selectively prevents undesired reactions in methanol fuel cells December 4th, 2020

High-performance single-atom catalysts for high-temperature fuel cells: Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate the commerciali September 25th, 2020

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56672

Continue Reading

Nano Technology

Simple robots, smart algorithms

Avatar

Published

on

Home > Press > Simple robots, smart algorithms

When sensors, communication, memory and computation are removed from a group of simple robots, certain sets of complex tasks can still be accomplished by leveraging the robots' physical characteristics, a trait that a team of researchers led by Georgia Tech calls "task embodiment." CREDIT
Shengkai Li, Georgia Tech
When sensors, communication, memory and computation are removed from a group of simple robots, certain sets of complex tasks can still be accomplished by leveraging the robots’ physical characteristics, a trait that a team of researchers led by Georgia Tech calls “task embodiment.” CREDIT
Shengkai Li, Georgia Tech

Abstract:
Anyone with children knows that while controlling one child can be hard, controlling many at once can be nearly impossible. Getting swarms of robots to work collectively can be equally challenging, unless researchers carefully choreograph their interactions — like planes in formation — using increasingly sophisticated components and algorithms. But what can be reliably accomplished when the robots on hand are simple, inconsistent, and lack sophisticated programming for coordinated behavior?

Simple robots, smart algorithms


Atlanta, GA | Posted on April 30th, 2021

A team of researchers led by Dana Randall, ADVANCE Professor of Computing and Daniel Goldman, Dunn Family Professor of Physics, both at Georgia Institute of Technology, sought to show that even the simplest of robots can still accomplish tasks well beyond the capabilities of one, or even a few, of them. The goal of accomplishing these tasks with what the team dubbed “dumb robots” (essentially mobile granular particles) exceeded their expectations, and the researchers report being able to remove all sensors, communication, memory and computation — and instead accomplishing a set of tasks through leveraging the robots’ physical characteristics, a trait that the team terms “task embodiment.”

The team’s BOBbots, or “behaving, organizing, buzzing bots” that were named for granular physics pioneer Bob Behringer, are “about as dumb as they get,” explains Randall. “Their cylindrical chassis have vibrating brushes underneath and loose magnets on their periphery, causing them to spend more time at locations with more neighbors.” The experimental platform was supplemented by precise computer simulations led by Georgia Tech physics student Shengkai Li, as a way to study aspects of the system inconvenient to study in the lab.

Despite the simplicity of the BOBbots, the researchers discovered that, as the robots move and bump into each other, “compact aggregates form that are capable of collectively clearing debris that is too heavy for one alone to move,” according to Goldman. “While most people build increasingly complex and expensive robots to guarantee coordination, we wanted to see what complex tasks could be accomplished with very simple robots.”

Their work, as reported April 23, 2021 in the journal Science Advances, was inspired by a theoretical model of particles moving around on a chessboard. A theoretical abstraction known as a self-organizing particle system was developed to rigorously study a mathematical model of the BOBbots. Using ideas from probability theory, statistical physics and stochastic algorithms, the researchers were able to prove that the theoretical model undergoes a phase change as the magnetic interactions increase — abruptly changing from dispersed to aggregating in large, compact clusters, similar to phase changes we see in common everyday systems, like water and ice.

“The rigorous analysis not only showed us how to build the BOBbots, but also revealed an inherent robustness of our algorithm that allowed some of the robots to be faulty or unpredictable,” notes Randall, who also serves as a professor of computer science and adjunct professor of mathematics at Georgia Tech.

###

The collaboration is based on experiments and simulations also designed by Bahnisikha Dutta, Ram Avinery and Enes Aydin from Georgia Tech, as well as on theoretical work by Andrea Richa and Joshua Daymude from Arizona State University, and Sarah Cannon from Claremont McKenna College, who is a recent Georgia Tech graduate.

This work is part of a Multidisciplinary University Research Initiative (MURI) funded by the Army Research Office (ARO) to study the foundations of emergent computation and collective intelligence.

Funding: This work was supported by the Department of Defense under MURI award no. W911NF-19-1-0233 and by NSF awards DMS-1803325 (S.C.); CCF-1422603, CCF-1637393, and CCF-1733680 (A.W.R.); CCF-1637031 and CCF-1733812 (D.R. and D.I.G.); and CCF-1526900 (D.R.).

####

About Georgia Institute of Technology
The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition. The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students, representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning. As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

For more information, please click here

Contacts:
Tracey A. Reeves
404-660-2929

Jess Hunt-Ralston
Communications – College of Sciences
(404) 385-5207

@GeorgiaTech

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Robotics

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Advancement creates nanosized, foldable robots March 19th, 2021

Dynamic 3D printing process features a light-driven twist: Light provides freedom to control each layer and improves precision and speed February 4th, 2021

Govt.-Legislation/Regulation/Funding/Policy

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Possible Futures

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

A silver lining for extreme electronics April 30th, 2021

Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages April 30th, 2021

Discoveries

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Announcements

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Military

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56673

Continue Reading

Nano Technology

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal

Avatar

Published

on

Home > Press > Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal

(a) Schematic structure of polarized light detector. (b) Photoconductivity parallel and perpendicular to the interface. (c) Photoconductivity anisotropy versus excitation power. (d) Angle-resolved photocurrent as a function of polarization angle measured at 405 nm under zero bias. (e) Experimental polarization ratios of some reported polarized light detectors. (f) Angle-dependent photocurrent of the present device measured at different temperature. CREDIT
@Science China Press
(a) Schematic structure of polarized light detector. (b) Photoconductivity parallel and perpendicular to the interface. (c) Photoconductivity anisotropy versus excitation power. (d) Angle-resolved photocurrent as a function of polarization angle measured at 405 nm under zero bias. (e) Experimental polarization ratios of some reported polarized light detectors. (f) Angle-dependent photocurrent of the present device measured at different temperature. CREDIT
@Science China Press

Abstract:
Polarization-sensitive photodetectors, based on anisotropic semiconductors, have exhibited wide advantages in specialized applications, such as astronomy, remote sensing, and polarization-division multiplexing. For the active layer of polarization-sensitive photodetectors, recent researches focus on two-dimensional (2D) organic-inorganic hybrid perovskites, where inorganic slabs and organic spacers are alternatively arranged in parallel layered structures. Compared with inorganic 2D materials, importantly, the solution accessibility of hybrid perovskites makes it possible to obtain their large crystals at low cost, offering exciting opportunities to incorporate crystal out-of-plane anisotropy for polarization-sensitive photodetection. However, limited by the absorption anisotropy of the material structure, polarization sensitivity of such a device remains low. Thus, a new strategy to design 2D hybrid perovskites with large anisotropy for polarization-sensitive photodetection is urgently needed.

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal


Beijing, China | Posted on May 4th, 2021

Heterostructures provide a clue to address this challenge. On the one hand, construction of heterostructures can improve the optical absorption and free-carrier densities of the composite. On the other hand, the built-in electric field at the heterojunction can spatially separate the photogenerated electron-hole pairs, significantly reducing the recombination rate and further enhancing the sensitivity for polarization-sensitive photodetectors. Therefore, constructing single-crystalline heterostructures of anisotropic 2D hybrid perovskites would realize devices with high polarization sensitivity.

In a new research article published in the Beijing-based National Science Review, scientists at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences create a 2D/3D heterostructure crystal, combining the 2D hybrid perovskite with its 3D counterpart; and achieve polarization-sensitive photodetection with record-high performance. Different from the previous work, devices based on the heterostructure crystal deliberately leverage the anisotropy of 2D perovskite and the built-in electric field of heterostructure, permitting the first demonstration of a perovskite heterostructure-based polarization-sensitive photodetector that operates without the need for external energy supply. Notably, the polarization sensitivity of the device surpasses all of the reported perovskite-based devices; and can be competitive with conventional inorganic heterostructure-based photodetectors. Further studies disclose that the built-in electric field formed at the heterojunction can efficiently separate those photogenerated excitons, reducing their recombination rate and therefore enhancing the performance of the resulting polarization-sensitive photodetector.

“High polarization sensitivity is successfully achieved in self-driven polarization-sensitive photodetector based on a single-crystalline 2D/3D hybrid perovskite heterostructure which is grown via a delicate solution method,” the author claims, “This innovative study broadens the choice of materials that can be used for high-performance polarization-sensitive photodetectors, and correspondingly, the design strategies.”

###

This research received funding from the the National Natural Science Foundation of China, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS), the Natural Science Foundation of Fujian Province, the Strategic Priority Research Program of the CAS and the Youth Innovation Promotion of CAS.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Junhua Luo

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Xinyuan Zhang, Lina Li, Chengmin Ji, Xitao Liu, Qing Li, Kun Zhang, Yu Peng, Maochun Hong and Junhua Luo

Related News Press

News and information

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

2 Dimensional Materials

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Perovskites

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Possible Futures

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

A silver lining for extreme electronics April 30th, 2021

Open-source GPU technology for supercomputers: Researchers navigate advantages and disadvantages April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Sensors

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Discoveries

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Announcements

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

World’s first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov’s dog April 30th, 2021

Aerospace/Space

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

A silver lining for extreme electronics April 30th, 2021

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56675

Continue Reading
Blockchain4 days ago

Ethereum hits $3,000 for the first time, now larger than Bank of America

Blockchain4 days ago

Munger ‘Anti-Bitcoin’ and Buffett ‘Annoyance’ Towards Crypto Industry

Blockchain2 days ago

The Reason for Ethereum’s Recent Rally to ATH According to Changpeng Zhao

Aviation2 days ago

American Airlines Passenger Arrested After Alleged Crew Attack

Gaming5 days ago

New Pokemon Snap: How To Unlock All Locations | Completion Guide

Blockchain21 hours ago

Chiliz Price Prediction 2021-2025: $1.76 By the End of 2025

Blockchain4 days ago

BNY Mellon Regrets Not Owning Stocks of Companies Investing in Bitcoin

Blockchain2 days ago

Mining Bitcoin: How to Mine Bitcoin

Automotive4 days ago

Ford Mach-E Co-Pilot360 driver monitoring system needs an update ASAP

Blockchain2 days ago

Mining Bitcoin: How to Mine Bitcoin

Fintech5 days ago

Telcoin set to start remittance operations in Australia

Blockchain5 days ago

Mining Bitcoin: How to Mine Bitcoin

Blockchain5 days ago

Coinbase to Acquire Crypto Analytics Company Skew

Blockchain4 days ago

Turkey Jails 6 Suspects Connected to the Thodex Fraud Including Two CEO Siblings

Aviation4 days ago

TV Stars Fined After Disorderly Conduct Onboard British Airways

Blockchain4 days ago

Here’s the long-term ROI potential of Ethereum that traders need to be aware of

Fintech3 days ago

Talking Fintech: Customer Experience and the Productivity Revolution

Blockchain5 days ago

A Year Later: Uzbekistan Plans to Lift its Cryptocurrency Ban

AR/VR5 days ago

The dangers of clickbait articles that explore VR

Nano Technology4 days ago

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance

Trending