Zephyrnet Logo

Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans

Date:

    • Kozubal M.A.
    • et al.

    Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms.

    Front. Microbiol. 2012; 3: 109

    • Quatrini R.
    • Johnson D.B.

    Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH.

    Curr. Opin. Microbiol. 2018; 43: 139-147

    • Bell E.
    • et al.

    Active sulfur cycling in the terrestrial deep subsurface.

    ISME J. 2020; 14: 1260-1272

    • Benson C.A.
    • et al.

    Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents.

    FEMS Microbiol. Ecol. 2011; 76: 74-88

    • González-Toril E.
    • et al.

    Microbial ecology of an extreme acidic environment, the Tinto River.

    Appl. Environ. Microbiol. 2003; 69: 4853-4865

    • Cárdenas J.P.
    • et al.

    Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    Res. Microbiol. 2016; 167: 529-538

    • Parada P.
    • Bobadilla-Fazzini R.

    Bioleaching of minerals by acidophile microorganisms.

    in: Flickinger M.C. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. Wiley, 2009: 1-12

    • Johnson D.B.
    • Quatrini R.

    Acidophile microbiology in space and time.

    Curr. Issues Mol. Biol. 2020; 39: 63-76

    • Bellenberg S.
    • et al.

    Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite.

    Front. Microbiol. 2019; 10: 592

    • Bouchal P.
    • et al.

    Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry.

    Proteomics. 2006; 6: 4278-4285

    • Chen L.
    • et al.

    Method development for electrotransformation of Acidithiobacillus caldus.

    J. Microbiol. Biotechnol. 2010; 20: 39-44

    • Duarte F.
    • et al.

    Protein function in extremely acidic conditions: molecular simulations of a predicted aquaporin and a potassium channel in Acidithiobacillus ferrooxidans.

    Adv. Mater. Res. 2009; 71/73: 211-214

    • Baker-Austin C.
    • Dopson M.

    Life in acid: pH homeostasis in acidophiles.

    Trends Microbiol. 2007; 15: 165-171

    • Banerjee I.
    • et al.

    Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications.

    Curr. Opin. Biotechnol. 2017; 45: 144-155

    • Quatrini R.
    • et al.

    Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans.

    BMC Genomics. 2009; 10: 394

    • Zhan Y.
    • et al.

    Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans.

    World J. Microbiol. Biotechnol. 2019; 35: 60

    • Chen D.
    • et al.

    Construction of recombinant mercury resistant Acidithiobacillus caldus.

    Microbiol. Res. 2011; 166: 515-520

    • Chen L.
    • et al.

    Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    PLoS One. 2012; 7e39470

    • Díaz M.
    • et al.

    Biofilm formation by the acidophile bacterium Acidithiobacillus thiooxidans involves c-di-GMP pathway and Pel exopolysaccharide.

    Genes. 2018; 9: 113

    • Meng J.
    • et al.

    Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    Microbiol. Res. 2013; 168: 469-476

    • Tian K.L.
    • et al.

    Conversion of an obligate autotrophic bacteria to heterotrophic growth: expression of a heterogeneous phosphofructokinase gene in the chemolithotroph Acidithiobacillus thiooxidans.

    Biotechnol. Lett. 2003; 25: 749-754

    • van Zyl L.J.
    • et al.

    Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange.

    Appl. Environ. Microbiol. 2008; 74: 5686-5694

    • Wang Z.B.
    • et al.

    The two-component system RsrS-RsrR regulates the tetrathionate intermediate pathway for thiosulfate oxidation in Acidithiobacillus caldus.

    Front. Microbiol. 2016; 7: 1755

    • Wen Q.
    • et al.

    A versatile and efficient markerless gene disruption system for A cidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene.

    Environ. Microbiol. 2014; 16: 3499-3514

    • Wu W.
    • et al.

    Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus.

    PLoS One. 2017; 12e0183668

    • Yang C.L.
    • et al.

    Essential role of σ factor RpoF in flagellar biosynthesis and flagella-mediated motility of Acidithiobacillus caldus.

    Front. Microbiol. 2019; 10: 1130

    • Zhang M.J.
    • et al.

    Construction and application of an expression vector from the new plasmid pLAtc1 of Acidithiobacillus caldus.

    Appl. Microbiol. Biotechnol. 2014; 98: 4083-4094

    • Zhao Q.
    • et al.

    Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance.

    Acta Microbiol. Sin. 2005; 45: 675-679

    • Gao X.Y.
    • et al.

    The substrate-dependent regulatory effects of the AfeI/R system in Acidithiobacillus ferrooxidans reveals the novel regulation strategy of quorum sensing in acidophiles.

    Environ. Microbiol. 2020; 23: 753-773

    • Gao X.Y.
    • et al.

    Novel strategy for improvement of the bioleaching efficiency of Acidithiobacillus ferrooxidans based on the AfeI/R quorum sensing system.

    Minerals. 2020; 10: 222

    • Inaba Y.
    • et al.

    Transposase-mediated chromosomal integration of exogenous genes in Acidithiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 2018; 84e01381-18

    • Inaba Y.
    • et al.

    Enhanced microbial corrosion of stainless steel by Acidithiobacillus ferrooxidans through the manipulation of substrate oxidation and overexpression of rus.

    Biotechnol. Bioeng. 2020; 117: 3475-3485

    • Kernan T.
    • et al.

    Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    Biotechnol. Bioeng. 2016; 113: 189-197

    • Kusano T.
    • et al.

    Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant.

    J. Bacteriol. 1992; 174: 6617-6623

    • Liu W.
    • et al.

    Overexpression of rusticyanin in Acidithiobacillus ferrooxidans ATCC19859 increased Fe (II) oxidation activity.

    Curr. Microbiol. 2011; 62: 320-324

    • Liu W.
    • et al.

    Increases of ferrous iron oxidation activity and arsenic stressed cell growth by overexpression of Cyc2 in Acidithiobacillus ferrooxidans ATCC 19859.

    Biotechnol. Appl. Biochem. 2013; 60: 623-628

    • Liu Z.
    • et al.

    Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis.

    J. Bacteriol. 2000; 182: 2269-2276

    • Peng J.B.
    • et al.

    Expression of heterogenous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 1994; 60: 2653-2656

    • Wang H.
    • et al.

    Application of β-glucuronidase (GusA) as an effective reporter for extremely acidophilic Acidithiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 2017; 101: 3283-3294

    • Wang H.
    • et al.

    Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant.

    Appl. Environ. Microbiol. 2012; 78: 1826-1835

    • Yu Y.
    • et al.

    Construction and characterization of tetH overexpression and knockout strains of Acidithiobacillus ferrooxidans.

    J. Bacteriol. 2014; 196: 2255-2264

    • Jain A.
    • Gralnick J.A.

    Engineering lithoheterotrophy in an obligate chemolithoautotrophic Fe (II) oxidizing bacterium.

    Sci. Rep. 2021; 11: 2165

    • Valdés J.
    • et al.

    Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications.

    BMC Genomics. 2008; 9: 597

    • DiSpirito A.A.
    • Tuovinen O.H.

    Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans.

    Arch. Microbiol. 1982; 133: 28-32

    • Kucera J.
    • et al.

    A model of aerobic and anaerobic metabolism of hydrogen in the extremophile Acidithiobacillus ferrooxidans.

    Front. Microbiol. 2020; 11: 3003

    • Pronk J.
    • et al.

    Anaerobic growth of Thiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 1992; 58: 2227-2230

    • Pronk J.
    • et al.

    Growth of Thiobacillus ferrooxidans on formic acid.

    Appl. Environ. Microbiol. 1991; 57: 2057-2062

    • Rawlings D.E.
    • Kusano T.

    Molecular genetics of Thiobacillus ferrooxidans.

    Microbiol. Mol. Biol. Rev. 1994; 58: 39-55

    • Karavaiko G.I.
    • et al.

    Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans.

    Int. J. Syst. Evol. Microbiol. 2003; 53: 113-119

    • Peng H.
    • et al.

    Structure analysis of 16S rDNA sequences from strains of Acidithiobacillus ferrooxidans.

    BMB Rep. 2006; 39: 178-182

    • Moya-Beltrán A.
    • et al.

    Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions.

    ISME J. 2021; ()

    • Zhang Y.
    • et al.

    Complete genome sequence of Acidithiobacillus Ferrooxidans YNTRS-40, a strain of the ferrous iron- and sulfur-oxidizing acidophile.

    Microorganisms. 2019; 8: 2

    • Ezraty B.
    • Barras F.

    The ‘liaisons dangereuses’ between iron and antibiotics.

    FEMS Microbiol. Rev. 2016; 40: 418-435

    • Wang R.
    • et al.

    Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase (cat) gene as a selection marker for Acidithiobacillus caldus.

    PLoS One. 2017; 12e0183307

    • Shiratori T.
    • et al.

    Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli.

    J. Bacteriol. 1989; 171: 3458-3464

    • Barros M.E.C.
    • et al.

    Production and regeneration of Thiobacillus ferrooxidans spheroplasts.

    Appl. Environ. Microbiol. 1985; 50: 721-723

    • Gumulya Y.
    • et al.

    In a quest for engineering acidophiles for biomining applications: challenges and opportunities.

    Genes. 2018; 9: 116

    • Rawlings D.E.
    • Woods D.R.

    Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains.

    Appl. Environ. Microbiol. 1985; 49: 1323-1325

    • Rawlings D.E.
    • et al.

    Expression of a Thiobacillus ferrooxidans origin of replication in Escherichia coli.

    J. Bacteriol. 1984; 158: 737-738

    • Shiratori T.
    • et al.

    Characterization and cloning of plasmids from the iron-oxidizing bacterium Thiobacillus ferrooxidans.

    Curr. Microbiol. 1991; 23: 321-326

  • Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems.

    Appl. Environ. Microbiol. 2006; 72: 211

    • Naylor L.H.

    Reporter gene technology: the future looks bright.

    Biochem. Pharmacol. 1999; 58: 749-757

    • Kernan T.
    • et al.

    Characterization of endogenous promoters for control of recombinant gene expression in Acidithiobacillus ferrooxidans.

    Biotechnol. Appl. Biochem. 2017; 64: 793-802

    • Rawlings D.E.
    • Tietze E.

    Comparative biology of IncQ and IncQ-like plasmids.

    Microbiol. Mol. Biol. Rev. 2001; 65: 481-496

    • Chen X.
    • et al.

    Application of firefly luciferase (Luc) as a reporter gene for the chemoautotrophic and acidophilic Acidithiobacillus spp.

    Curr. Microbiol. 2020; 77: 3724-3730

    • Lacy G.H.
    • Stromberg V.K.

    Transposon and marker exchange mutagenesis.

    in: Singh U.S. Singh R.P. Molecular Methods in Plant Pathology. CRC Press, 2017: 151-165

    • Jiang V.
    • et al.

    Computational structure prediction provides a plausible mechanism for electron transfer by the outer membrane protein Cyc2 from Acidithiobacillus ferrooxidans.

    Protein Sci. 2021; 30: 1310-1652

    • Cox J.C.
    • Boxer D.H.

    The purification and some properties of rusticyanin, a blue copper protein involved in iron (II) oxidation from Thiobacillus ferrooxidans.

    Biochem. J. 1978; 174: 497-502

    • Nunzi F.
    • et al.

    Amino-acid sequence of rusticyanin from Thiobacillus ferrooxidans and its comparison with other blue copper proteins.

    Biochim. Biophys. Acta. 1993; 1161: 28-34

    • Lappin A.G.
    • et al.

    Kinetics and mechanisms of reduction of rusticyanin, a blue copper protein from Thiobacillus ferrooxidans, by inorganic cations.

    Inorg. Chem. 1985; 24: 1446-1450

    • Wang H.
    • et al.

    Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp.

    Appl. Microbiol. Biotechnol. 2014; 98: 7511-7522

    • Saavedra A.
    • et al.

    Biooxidation of iron by Acidithiobacillus ferrooxidans in the presence of d-galactose: understanding its influence on the production of EPS and cell tolerance to high concentrations of iron.

    Front. Microbiol. 2020; 11: 759

    • Barreto M.
    • et al.

    Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 2005; 71: 2902-2909

    • Bellenberg S.
    • et al.

    Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans.

    Hydrometallurgy. 2012; 129: 82-89

    • Farah C.
    • et al.

    Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 2005; 71: 7033-7040

    • Rivas M.
    • et al.

    A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans.

    Biol. Res. 2005; 38: 283-297

    • Rivas M.
    • et al.

    Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans.

    Appl. Environ. Microbiol. 2007; 73: 3225

    • Inaba Y.
    • et al.

    Glutathione synthetase overexpression in Acidithiobacillus ferrooxidans improves halotolerance of iron oxidation.

    Appl. Environ. Microbiol. 2021; 87e01518-21

    • Guan J.
    • et al.

    Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    J. Biotechnol. 2017; 245: 21-27

    • Li X.
    • et al.

    Enhancing isobutyric acid production from engineered Acidithiobacillus ferrooxidans cells via media optimization.

    Biotechnol. Bioeng. 2016; 113: 790-796

    • Reznikoff W.S.

    Transposon Tn5.

    Annu. Rev. Genet. 2008; 42: 269-286

    • Liu Z.
    • et al.

    Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation.

    Hydrometallurgy. 2001; 59: 339-345

    • Inaba Y.
    • et al.

    Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures.

    Biotechnol. Bioeng. 2021; 118: 3225-3238

    • Flores-Ríos R.
    • et al.

    The Type IV secretion system of ICEAfe1: formation of a conjugative pilus in Acidithiobacillus ferrooxidans.

    Front. Microbiol. 2019; 10: 30

    • Makarova K.S.
    • et al.

    An updated evolutionary classification of CRISPR–Cas systems.

    Nat. Rev. Microbiol. 2015; 13: 722-736

    • Pickar-Oliver A.
    • Gersbach C.A.

    The next generation of CRISPR–Cas technologies and applications.

    Nat. Rev. Mol. Cell Biol. 2019; 20: 490-507

    • Wang J.
    • et al.

    Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries.

    J. Hazard. Mater. 2018; 354: 250-257

    • Fazzini R.A.B.
    • et al.

    Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate.

    Appl. Microbiol. Biotechnol. 2011; 89: 771-780

    • Li Y.Q.
    • et al.

    Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence.

    Curr. Microbiol. 2010; 60: 17-24

    • Ulloa G.
    • et al.

    Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance.

    Front. Microbiol. 2018; 9: 234

    • Wu L.
    • et al.

    Effects of single and mixed energy sources on intracellular nanoparticles synthesized by Acidithiobacillus ferrooxidans.

    Minerals. 2019; 9: 163

    • Chen M.
    • et al.

    Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    Curr. Microbiol. 2015; 70: 290-297

    • Zheng C.
    • et al.

    Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd2+ stress: evidence from transcriptional, enzymatic, and metabolic profiles.

    Extremophiles. 2015; 19: 429-436

    • Liu W.B.
    • et al.

    Influence of different Fe sources and concentrations on formation of magnetosomes in Acidithiobacillus ferrooxidans.

    Trans. Nonferrous Metals Soc. China. 2008; 18: 1379-1385

    • Tian K.L.
    • et al.

    Expression of phosphofructokinase gene from E. coli in an obligately autotrophic bacterium Acidithiobacillus thiooxidans Tt-Z2 strain [J].

    J. Shandong Univ. Nat. Sci. 2004; 2

    • Chen X.K.
    • et al.

    Ferric uptake regulator provides a new strategy for acidophile adaptation to acidic ecosystems.

    Appl. Environ. Microbiol. 2020; 86e00268-20

    • Castro M.
    • et al.

    Diguanylate cyclase null mutant reveals that c-di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PLoS One. 2015; 10e0116399

    • Li L.F.
    • et al.

    The σ 54-dependent two-component system regulating sulfur oxidization (Sox) system in Acidithiobacillus caldus and some chemolithotrophic bacteria.

    Appl. Microbiol. Biotechnol. 2017; 101: 2079-2092

    • Temple K.L.
    • Colmer A.R.

    The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans.

    J. Bacteriol. 1951; 62: 605-611

    • Crundwell F.K.

    The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans.

    Bioelectrochem. Bioenerg. 1997; 43: 115-122

    • Williams K.P.
    • Kelly D.P.

    Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria.

    Int. J. Syst. Evol. Microbiol. 2013; 63: 2901-2906

    • Rohwerder T.
    • et al.

    Bioleaching review part A.

    Appl. Microbiol. Biotechnol. 2003; 63: 239-248

    • Walsh F.
    • Mitchell R.

    pH-Dependent succession of iron bacteria.

    Environ. Sci. Technol. 1972; 6: 809-812

    • Ahonen L.
    • Tuovinen O.H.

    Microbiological oxidation of ferrous iron at low temperatures.

    Appl. Microbiol. Biotechnol. 1989; 55: 312-316

    • Osorio H.
    • et al.

    Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans.

    Appl. Microbiol. Biotechnol. 2013; 79: 2172-2181

    • Drobner E.
    • et al.

    Thiobacillus ferrooxidans, a facultative hydrogen oxidizer.

    Appl. Environ. Microbiol. 1990; 56: 2922-2923

    • Ohmura N.
    • et al.

    Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans.

    J. Bacteriol. 2002; 184: 2081

    • Schippers A.
    • Sand W.

    Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur.

    Appl. Environ. Microbiol. 1999; 65: 319-321

    • Schippers A.
    • et al.

    Biomining: metal recovery from ores with microorganisms.

    in: Geobiotechnology. I. Springer, 2013: 1-47

    • Rawlings D.E.

    Heavy metal mining using microbes.

    Annu. Rev. Microbiol. 2002; 56: 65-91

    • Bauermeister A.
    • et al.

    Growth of the acidophilic iron–sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions.

    Planet. Space Sci. 2014; 98: 205-215

    • Ingledew W.J.

    Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph.

    Biochim. Biophys. Acta. 1982; 683: 89-117

    • Elbehti A.
    • et al.

    First evidence for existence of an uphill electron transfer through the and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans.

    J. Bacteriol. 2000; 182: 3602-3606

    • Bird L.J.
    • et al.

    Bioenergetic challenges of microbial iron metabolisms.

    Trends Microbiol. 2011; 19: 330-340

    • Sugio T.
    • et al.

    Purification and some properties of sulfite:ferric ion oxidoreductase from Thiobacillus ferrooxidans.

    J. Bacteriol. 1992; 174: 4189-4192

    • Banderas A.
    • Guiliani N.

    Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    Int. J. Mol. Sci. 2013; 14: 16901-16916

    • Mamani S.
    • et al.

    Insights into the quorum sensing regulon of the acidophilic Acidithiobacillus ferrooxidans revealed by transcriptomic in the presence of an acyl homoserine lactone superagonist analog.

    Front. Microbiol. 2016; 7: 1365

    • Bellenberg S.
    • et al.

    Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    Res. Microbiol. 2014; 165: 773-781

    • González A.
    • et al.

    AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    Appl. Microbiol. Biotechnol. 2013; 97: 3729-3737

    • Holmes D.S.
    • et al.

    Cloning of a Thiobacillus ferrooxidans plasmid in Escherichia coli.

    J. Bacteriol. 1984; 157: 324-326

    • Peng J.B.
    • et al.

    Plasmid and transposon transfer to Thiobacillus ferrooxidans.

    J. Bacteriol. 1994; 176: 2892-2897

    • Peng J.B.
    • et al.

    Solid medium for the genetic manipulation of Thiobacillus ferrooxidans.

    J. Gen. Appl. Microbiol. 1994; 40: 243-253

    • Li X.
    • et al.

    Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    Biotechnol. Bioeng. 2014; 111: 1940-1948

    • Duquesne K.
    • et al.

    Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.

    Appl. Environ. Microbiol. 2003; 69: 6165

  • PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00235-3?rss=yes

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?