Zephyrnet Logo

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Date:

  • 1.

    Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    CAS  Google Scholar 

  • 2.

    Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  Google Scholar 

  • 3.

    Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    CAS  Google Scholar 

  • 4.

    Parker, J. F. et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    CAS  Google Scholar 

  • 5.

    Zheng, J. & Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv. 7, eabe0219 (2021).

    CAS  Google Scholar 

  • 6.

    Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Ener. Env. Sci. 11, 881–892 (2018).

    CAS  Google Scholar 

  • 7.

    Bayer, M. et al. Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures. J. Electrochem. Soc. 166, A909–A914 (2019).

    CAS  Google Scholar 

  • 8.

    Higashi, S., Lee, S. W., Lee, J. S., Takechi, K. & Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016).

    Google Scholar 

  • 9.

    Zhao, Z. et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    CAS  Google Scholar 

  • 10.

    Zhang, L. et al. ZnCl2 ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019).

    Google Scholar 

  • 11.

    Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    CAS  Google Scholar 

  • 12.

    Fu, J. et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017).

    Google Scholar 

  • 13.

    Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    CAS  Google Scholar 

  • 14.

    Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    CAS  Google Scholar 

  • 15.

    Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    CAS  Google Scholar 

  • 16.

    Xie, X. et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020).

    CAS  Google Scholar 

  • 17.

    Qiu, H. et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019).

    Google Scholar 

  • 18.

    Cao, L., Li, D., Deng, T., Li, Q. & Wang, C. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292–19296 (2020).

    CAS  Google Scholar 

  • 19.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    CAS  Google Scholar 

  • 20.

    Sun, W. et al. A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    CAS  Google Scholar 

  • 21.

    Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    CAS  Google Scholar 

  • 22.

    Nie, M. et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 117, 25381–25389 (2013).

    CAS  Google Scholar 

  • 23.

    Cao, X. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    CAS  Google Scholar 

  • 24.

    Winiarski, J., Tylus, W., Winiarska, K., Szczygieł, I. & Szczygieł, B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, 1–14 (2018).

    Google Scholar 

  • 25.

    Suo, L. et al. ‘Water-in-salt’ electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Google Scholar 

  • 26.

    Chen, Y., Cao, Y., Shi, Y., Xue, Z. & Mu, T. Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis–mass spectrometry. Ind. Eng. Chem. Res. 51, 7418–7427 (2012).

    CAS  Google Scholar 

  • 27.

    Kroon, M. C., Buijs, W., Peters, C. J. & Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem. 8, 241–245 (2006).

    CAS  Google Scholar 

  • 28.

    Markevich, E. et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55, 2687–2696 (2010).

    CAS  Google Scholar 

  • 29.

    Preibisch, Y., Horsthemke, F., Winter, M., Nowak, S. & Best, A. S. Is the cation innocent? An analytical approach on the cationic decomposition behavior of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide in contact with lithium metal. Chem. Mater. https://doi.org/10.1021/acs.chemmater.9b04827 (2020).

  • 30.

    Chowdhury, F. A., Yamada, H., Higashii, T., Goto, k & Onoda, M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013).

    CAS  Google Scholar 

  • 31.

    Kortunov, P. V., Siskin, M., Paccagnini, M. & Thomann, H. CO2 reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways. Energy Fuels 30, 1223–1236 (2016).

    CAS  Google Scholar 

  • 32.

    Yi, Y. et al. Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack. Chem. Mater. 29, 8504–8512 (2017).

    Google Scholar 

  • 33.

    Nicolas, D. et al. The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Google Scholar 

  • 34.

    Cao, C.-N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besides electrode potential. Electrochim. Acta 35, 831–836 (1990).

    CAS  Google Scholar 

  • 35.

    Zhang, D., Li, L., Cao, L., Yang, N. & Huang, C. Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates. Corros. Sci. 43, 1627–1636 (2001).

    CAS  Google Scholar 

  • 36.

    McKubre, M. C. H. & Macdonald, D. D. The dissolution and passivation of zinc in concentrated aqueous hydroxide. J. Electrochem. Soc. 128, 524–530 (1981).

    CAS  Google Scholar 

  • 37.

    Parker, J. F., Ko, J. S., Rolison, D. R. & Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018).

    CAS  Google Scholar 

  • 38.

    Liu, L. et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 4, 1650–1657 (2019).

    CAS  Google Scholar 

  • 39.

    Yamamoto, N., Okuhara, T. & Nakato, T. Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. J. Mater. Chem. 11, 1858–1863 (2001).

    CAS  Google Scholar 

  • 40.

    Wang, F. et al. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018).

    CAS  Google Scholar 

  • 41.

    Horng, P., Brindza, M. R., Walker, R. A. & Fourkas, J. T. Behavior of organic liquids at bare and modified silica interfaces. J. Phys. Chem. C 114, 394–402 (2010).

    CAS  Google Scholar 

  • 42.

    Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  • 43.

    Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    CAS  Google Scholar 

  • 44.

    Zhao, Y., Schultz, N. E. & Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006).

    Google Scholar 

  • 45.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  • 46.

    Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  Google Scholar 

  • 47.

    Montgomer, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999).

    Google Scholar 

  • 48.

    Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Google Scholar 

  • 49.

    Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    CAS  Google Scholar 

  • 50.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Google Scholar 

  • 51.

    Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    CAS  Google Scholar 

  • 52.

    Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350 (1981).

    CAS  Google Scholar 

  • 53.

    Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    CAS  Google Scholar 

  • 54.

    Reed, S. K., Lanning, O. J. & Madden, P. A. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 126, 084704 (2007).

    Google Scholar 

  • 55.

    Vatamanu, J., Borodin, O. & Smith, G. D. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys. Chem. Chem. Phys. 12, 170–182 (2010).

    CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00905-4

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?