Zephyrnet Logo

Fano-resonant ultrathin film optical coatings

Date:

  • 1.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Miroshnichenko, A. E. et al. Fano resonances: a discovery that was not made 100 years ago. Opt. Photonics News 19, 48–48 (2008).

    Article  Google Scholar 

  • 3.

    Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C. & Maier, S. A. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835–2840 (2011).

    CAS  Article  Google Scholar 

  • 4.

    Mukherjee, S. et al. Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett. 10, 2694–2701 (2010).

    CAS  Article  Google Scholar 

  • 5.

    Zhang, S., Bao, K., Halas, N. J., Xu, H. & Nordlander, P. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11, 1657–1663 (2011).

    CAS  Article  Google Scholar 

  • 6.

    Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  • 7.

    Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    CAS  Article  Google Scholar 

  • 9.

    Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    CAS  Article  Google Scholar 

  • 10.

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    CAS  Article  Google Scholar 

  • 11.

    Shen, Y. et al. Structural colors from Fano resonances. ACS Photonics 2, 27–32 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Khurgin, J. B. Slow light in various media: a tutorial. Adv. Opt. Photon. 2, 287–318 (2010).

    Article  Google Scholar 

  • 13.

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    CAS  Article  Google Scholar 

  • 14.

    Ruan, B. et al. Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure. Sensors 17, 1924 (2017).

    Article  CAS  Google Scholar 

  • 15.

    Wu, C. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2011).

    Article  CAS  Google Scholar 

  • 16.

    Sounas, D. L. & Alù, A. Fundamental bounds on the operation of Fano nonlinear isolators. Phys. Rev. B 97, 115431 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).

    CAS  Article  Google Scholar 

  • 18.

    Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    CAS  Article  Google Scholar 

  • 19.

    Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009).

    CAS  Article  Google Scholar 

  • 20.

    Macleod, H. A. Thin Film Optical Filters, 4th edn (Adam Hilger, 1986).

  • 21.

    Gallais, L. & Commandré, M. Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53, A186–A196 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Anjum, F., Fryauf, D. M., Ahmad, R., Phillips, A. C. & Kobayashi, N. P. Improving silver mirrors with aluminum oxynitride protection layers: variation in refractive index with controlled oxygen content by radiofrequency magnetron sputtering. IEEE Spect. 26, 34–35 (2018).

    Google Scholar 

  • 23.

    Tannas, L. E. Flat-panel displays displace large, heavy, power-hungry CRTs. IEEE Spectr. 26, 34–35 (1989).

    Article  Google Scholar 

  • 24.

    Hornbeck, L. J. Digital light processing for high-brightness high-resolution applications. In Proc. SPIE 3013, Projection Displays III (SPIE, 1997).

  • 25.

    Dobrowolski, J. A., Ho, F. C. & Waldorf, A. Research on thin film anticounterfeiting coatings at the National Research Council of Canada. Appl. Opt. 28, 2702–2717 (1989).

    CAS  Article  Google Scholar 

  • 26.

    Granqvist, C. G. & Hjortsberg, A. Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl. Phys. Lett. 36, 139–141 (1980).

    CAS  Article  Google Scholar 

  • 27.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Article  Google Scholar 

  • 28.

    Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Chen, D. Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).

    CAS  Article  Google Scholar 

  • 30.

    Li, Z., Butun, S. & Aydin, K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015).

    CAS  Article  Google Scholar 

  • 31.

    ElKabbash, M., Iram, S., Letsou, T., Hinczewski, M. & Strangi, G. Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates. Adv. Opt. Mater. 6, 1800672 (2018).

    Article  CAS  Google Scholar 

  • 32.

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2012).

    Article  CAS  Google Scholar 

  • 33.

    ElKabbash, M. et al. Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities. Opt. Lett. 42, 3598–3601 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Svensson, J. S. E. M. & Granqvist, C. G. Electrochromic coatings for ‘smart windows’. Sol. Energy Mater. 12, 391–402 (1985).

    CAS  Article  Google Scholar 

  • 35.

    Thielsch, R.in Optical Interference Coatings (eds Kaiser, N. & Pulker, H. K.) 257–279 (Springer, 2003).

  • 36.

    Optical Thin Films and Coatings, From Materials to Applications 2nd edn (Elsevier, 2013).

  • 37.

    Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).

    CAS  Article  Google Scholar 

  • 38.

    Fann, C.-H. et al. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express 27, 27917–27926 (2019).

    CAS  Article  Google Scholar 

  • 39.

    ElKabbash, M. et al. Hydrogen sensing using thin-film perfect light absorber. ACS Photonics 6, 1889–1894 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Sreekanth, K. V. et al. Generalized Brewster angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing. ACS Photonics https://doi.org/10.1021/acsphotonics.9b00564 (2019).

    Article  Google Scholar 

  • 41.

    Gallinet, B. in Fano Resonances in Optics and Microwaves (eds Kamenetskii, E. et al.) 109–136 (Springer, 2018).

  • 42.

    Joe, Y. S., Satanin, A. M. & Kim, C. S. Classical analogy of Fano resonances. Phys. Scr. 74, 259–266 (2006).

    CAS  Article  Google Scholar 

  • 43.

    Ismail, N., Kores, C. C., Geskus, D. & Pollnau, M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express 24, 16366–16389 (2016).

    Article  Google Scholar 

  • 44.

    Vorobyev, A. Y. & Guo, C. Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 041914 (2008).

    Article  CAS  Google Scholar 

  • 45.

    Fu, S. et al. Review of recent progress on single-frequency fiber lasers [Invited]. J. Opt. Soc. Am. B 34, A49–A62 (2017).

    CAS  Article  Google Scholar 

  • 46.

    Lee, K.-T., Ji, C., Banerjee, D. & Guo, L. J. Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser Photon. Rev. 9, 354–362 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Branz, H. M., Regan, W., Gerst, K. J., Borak, J. B. & Santori, E. A. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity. Energy Environ. Sci. 8, 3083–3091 (2015).

    CAS  Article  Google Scholar 

  • 48.

    Mojiri, A., Taylor, R., Thomsen, E. & Rosengarten, G. Spectral beam splitting for efficient conversion of solar energy—a review. Renew. Sustain. Energy Rev. 28, 654–663 (2013).

    Article  Google Scholar 

  • 49.

    Vossier, A. et al. Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies. Sustain. Energy Fuels 2, 2060–2067 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Maghanga, C. M., Niklasson, G. A., Granqvist, C. G. & Mwamburi, M. Spectrally selective reflector surfaces for heat reduction in concentrator solar cells: modeling and applications of TiO2:Nb-based thin films. Appl. Opt. 50, 3296–3302 (2011).

    CAS  Article  Google Scholar 

  • 51.

    Wang, Y., Liu, H. & Zhu, J. Solar thermophotovoltaics: progress, challenges, and opportunities. APL Mater. 7, 080906 (2019).

    Article  CAS  Google Scholar 

  • 52.

    Sun, X., Sun, Y., Zhou, Z., Muhammad, A. & Bermel, P. Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6, 997–1015 (2017).

    Article  Google Scholar 

  • 53.

    Singh, S. C. et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. https://doi.org/10.1038/s41893-020-0566-x (2020).

  • 54.

    Denholm, D., O‘Connell, M., Brinkman, G. & Jorgenson, J. Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart (National Renewable Energy Laboratory, 2015).

  • 55.

    Sreekanth, K. V. et al. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing. Adv. Opt. Mater. 7, 1900081 (2019).

    Article  CAS  Google Scholar 

  • 56.

    Zhan, Z. et al. Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy 65, 104060 (2019).

    CAS  Article  Google Scholar 

  • 57.

    Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).

    CAS  Article  Google Scholar 

  • 58.

    Jalil, S. A. et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light. Sci. Appl. 9, 14 (2020).

    CAS  Article  Google Scholar 

  • 59.

    Xu, Y. & Miroshnichenko, A. E. Reconfigurable nonreciprocity with a nonlinear Fano diode. Phys. Rev. B 89, 134306 (2014).

    Article  CAS  Google Scholar 

  • 60.

    Chen, Z. et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun. 9, 4909 (2018).

    Article  CAS  Google Scholar 

  • 61.

    Mathematica v.12 (Wolfram, 2019).

  • 62.

    Lumerical (Ansys, Inc., 2020).

  • 63.

    Bermel, P. et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314–A334 (2010).

    Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00841-9

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?