Zephyrnet Logo

Exploiting unconventional prokaryotic hosts for industrial biotechnology

Date:

    • Volmer J.
    • et al.

    Guiding bioprocess design by microbial ecology.

    Curr. Opin. Microbiol. 2015; 25: 25-32

    • Yue H.
    • et al.

    A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates.

    Biotechnol. Biofuels. 2014; 7: 108

    • Lenzen C.
    • et al.

    High-yield production of 4-Hydroxybenzoate from glucose or glycerol by an engineered Pseudomonas taiwanensis VLB120.

    Front. Bioeng. Biotechnol. 2019; 7: 130

    • Li W.-J.
    • et al.

    Unraveling 1,4-Butanediol metabolism in Pseudomonas putida KT2440.

    Front. Microbiol. 2020; 11: 382

    • Claassens N.J.
    • et al.

    Harnessing the power of microbial autotrophy.

    Nat. Rev. Microbiol. 2016; 14: 692-706

    • Nikel P.I.
    • de Lorenzo V.

    Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism.

    Metab. Eng. 2018; 50: 142-155

    • García-Granados R.
    • et al.

    Metabolic engineering and synthetic biology: synergies, future, and challenges.

    Front. Bioeng. Biotechnol. 2019; 7: 36

    • Lee S.Y.
    • et al.

    A comprehensive metabolic map for production of bio-based chemicals.

    Nat. Catal. 2019; 2: 18-33

    • Straathof A.J.J.
    • et al.

    Grand research challenges for sustainable industrial biotechnology.

    Trends Biotechnol. 2019; 37: 1042-1050

    • Lee S.Y.
    • Kim H.U.

    Systems strategies for developing industrial microbial strains.

    Nat. Biotechnol. 2015; 33: 1061-1072

    • Weinstock M.T.
    • et al.

    Vibrio natriegens as a fast-growing host for molecular biology.

    Nat. Methods. 2016; 13: 849-851

    • Lee H.H.
    • et al.

    Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi.

    Nat. Microbiol. 2019; 4: 1105-1113

    • Hoffart E.
    • et al.

    High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology.

    Appl. Environ. Microbiol. 2017; 83: e01614-e01617

    • Wynands B.
    • et al.

    Streamlined Pseudomonas taiwanensis VLB120 chassis strains with improved bioprocess features.

    ACS Synth. Biol. 2019; 8: 2036-2050

    • Wang H.H.
    • et al.

    Programming cells by multiplex genome engineering and accelerated evolution.

    Nature. 2009; 460: 894-898

    • Isaacs F.J.
    • et al.

    Precise manipulation of chromosomes in vivo enables genome-wide codon replacement.

    Science. 2011; 333: 348-353

    • Thoma F.
    • Blombach B.

    Metabolic engineering of Vibrio natriegens.

    Essays Biochem. 2021; 65: 381-392

    • Rütering M.
    • et al.

    Tailor-made exopolysaccharides—CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa.

    Synth. Biol. 2017; 2ysx007

    • Schilling C.
    • et al.

    Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression.

    ACS Synth. Biol. 2020; 9: 3353-3363

    • Meliawati M.
    • et al.

    Recent advances of Cas12a applications in bacteria.

    Appl. Microbiol. Biotechnol. 2021; 105: 2981-2990

    • Hoschek A.
    • et al.

    Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol.

    Bioresour. Technol. 2019; 282: 171-178

    • Halan B.
    • et al.

    Biofilms as living catalysts in continuous chemical syntheses.

    Trends Biotechnol. 2012; 30: 453-465

    • Ankenbauer A.
    • et al.

    Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions.

    Microb. Biotechnol. 2020; 13: 1145-1161

    • Noorman H.J.
    • Heijnen J.J.

    Biochemical engineering’s grand adventure.

    Chem. Eng. Sci. 2017; 170: 677-693

    • Kampers L.F.C.
    • et al.

    Pseudomonas putida KT2440 is HV1 certified, not GRAS.

    Microb. Biotechnol. 2019; 12: 845-848

    • Schwanemann T.
    • et al.

    Pseudomonas as versatile aromatics cell factory.

    Biotechnol. J. 2020; 151900569

    • Bitzenhofer L.N.
    • et al.

    Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways 2.

    Essays Biochem. 2021; 65: 319-336

    • Häßler T.
    • et al.

    Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365.

    Bioresour. Technol. 2012; 124: 237-244

    • Song C.W.
    • et al.

    Microbial production of 2,3-butanediol for industrial applications.

    J. Ind. Microbiol. Biotechnol. 2019; 46: 1583-1601

    • Dragosits M.
    • Mattanovich D.

    Adaptive laboratory evolution – principles and applications for biotechnology.

    Microb. Cell Factories. 2013; 12: 64

    • Mohamed E.T.
    • et al.

    Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance.

    Metab. Eng. Commun. 2020; 11e00143

    • Cheng C.
    • et al.

    Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism.

    PLoS Comput. Biol. 2019; 15e1007066

    • Blaby I.K.
    • et al.

    Experimental evolution of a facultative thermophile from a mesophilic ancestor.

    Appl. Environ. Microbiol. 2012; 78: 144-155

    • Jarzab A.
    • et al.

    Meltome atlas—thermal proteome stability across the tree of life.

    Nat. Methods. 2020; 17: 495-503

    • Linger J.G.
    • et al.

    Lignin valorization through integrated biological funneling and chemical catalysis.

    Proc. Natl. Acad. Sci. 2014; 111: 12013-12018

    • Wendisch V.F.
    • et al.

    The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus, and yeast strains for access to alternative carbon sources.

    J. Biotechnol. 2016; 234: 139-157

    • Müller J.E.N.
    • et al.

    Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.

    Appl. Microbiol. Biotechnol. 2015; 99: 535-551

    • Kiefer D.
    • et al.

    From acetate to bio-based products: underexploited potential for industrial biotechnology.

    Trends Biotechnol. 2021; 39: 397-411

    • Lange L.
    • et al.

    Developing a sustainable and circular bio-based economy in EU: by partnering across sectors, upscaling and using new knowledge faster, and for the benefit of climate, environment and biodiversity, and people and business.

    Front. Bioeng. Biotechnol. 2021; 8619066

    • Claassens N.J.
    • et al.

    Towards sustainable feedstocks: a guide to electron donors for microbial carbon fixation.

    Curr. Opin. Biotechnol. 2018; 50: 195-205

    • Jayakody L.N.
    • et al.

    Thermochemical wastewater valorization via enhanced microbial toxicity tolerance.

    Energy Environ. Sci. 2018; 11: 1625-1638

    • Kim S.
    • et al.

    Growth of E. coli on formate and methanol via the reductive glycine pathway.

    Nat. Chem. Biol. 2020; 16: 538-545

    • Müller J.E.N.
    • et al.

    Engineering Escherichia coli for methanol conversion.

    Metab. Eng. 2015; 28: 190-201

    • Köpke M.
    • Simpson S.D.

    Pollution to products: recycling of ‘above ground’ carbon by gas fermentation.

    Curr. Opin. Biotechnol. 2020; 65: 180-189

    • Takors R.
    • et al.

    Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale.

    Microb. Biotechnol. 2018; 11: 606-625

    • Fast A.G.
    • Papoutsakis E.T.

    Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals.

    Curr. Opin. Chem. Eng. 2012; 1: 380-395

    • Grenz S.
    • et al.

    Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals.

    Metab. Eng. 2019; 55: 220-230

    • Siebert D.
    • et al.

    Genetic engineering of Oligotropha carboxidovorans strain OM5—a promising candidate for the aerobic utilization of synthesis gas.

    ACS Synth. Biol. 2020; 9: 1426-1440

    • Demain A.L.

    Small bugs, big business: the economic power of the microbe.

    Biotechnol. Adv. 2000; 18: 499-514

    • Baeshen N.A.
    • et al.

    Cell factories for insulin production.

    Microb. Cell Factories. 2014; 13: 141

    • Ghosh S.
    • et al.

    Mixed consortia in bioprocesses: role of microbial interactions.

    Appl. Microbiol. Biotechnol. 2016; 100: 4283-4295

    • Blank L.M.
    • et al.

    Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.

    FEBS J. 2008; 275: 5173-5190

    • Straub C.T.
    • et al.

    Biotechnology of extremely thermophilic archaea.

    FEMS Microbiol. Rev. 2018; 42: 543-578

    • Lee S.Y.
    • et al.

    Systems biotechnology for strain improvement.

    Trends Biotechnol. 2005; 23: 349-358

    • Chen L.-X.
    • et al.

    Accurate and complete genomes from metagenomes.

    Genome Res. 2020; 30: 315-333

    • Karnachuk O.V.
    • et al.

    Targeted isolation based on metagenome-assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere.

    Environ. Microbiol. 2021; 23: 3585-3598

    • Seaver S.M.D.
    • et al.

    The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison, and analysis of metabolic models for plants, fungi, and microbes.

    Nucleic Acids Res. 2021; 49: D575-D588

    • Machado D.
    • et al.

    Fast automated reconstruction of genome-scale metabolic models for microbial species and communities.

    Nucleic Acids Res. 2018; 46: 7542-7553

    • Karp P.D.
    • et al.

    Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology.

    Brief. Bioinform. 2021; 22: 109-126

    • Lewis N.E.
    • et al.

    Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods.

    Nat. Rev. Microbiol. 2012; 10: 291-305

    • Zielinski D.C.
    • et al.

    The expanding computational toolbox for engineering microbial phenotypes at the genome scale.

    Microorganisms. 2020; 8: 2050

    • Cankorur-Cetinkaya A.
    • et al.

    CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology.

    Microbiology. 2017; 163: 829-839

    • Zelezniak A.
    • et al.

    Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts.

    Cell Syst. 2018; 7: 269-283.e6

    • Costello Z.
    • Martin H.G.

    A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data.

    npj Syst. Biol. Appl. 2018; 4: 19

    • Helmy M.
    • et al.

    Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering.

    Metab. Eng. Commun. 2020; 11e00149

    • Antonakoudis A.
    • et al.

    The era of big data: genome-scale modelling meets machine learning.

    Comput. Struct. Biotechnol. J. 2020; 18: 3287-3300

    • Presnell K.V.
    • Alper H.S.

    Systems metabolic engineering meets machine learning: A New Era for Data-Driven Metabolic Engineering.

    Biotechnol. J. 2019; 141800416

    • Otto M.
    • et al.

    Targeting 16S rDNA for stable recombinant gene expression in Pseudomonas.

    ACS Synth. Biol. 2019; 8: 1901-1912

    • Ebert B.E.
    • et al.

    Response of Pseudomonas putida KT2440 to increased NADH and ATP demand.

    Appl. Environ. Microbiol. 2011; 77: 6597-6605

    • Wynands B.
    • et al.

    Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.

    Metab. Eng. 2018; 47: 121-133

    • Nogales J.
    • et al.

    High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities.

    Environ. Microbiol. 2020; 22: 255-269

    • Nies S.C.
    • et al.

    High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120.

    Metab. Eng. 2020; 62: 84-94

    • Winsor G.L.
    • et al.

    Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    Nucleic Acids Res. 2016; 44: D646-D653

    • Wierckx N.
    • et al.

    Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics.

    J. Biotechnol. 2009; 143: 124-129

    • Borrero-de Acuña J.M.
    • et al.

    Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.

    Microb. Cell Factories. 2014; 13: 88

    • Otto M.
    • et al.

    Rational engineering of phenylalanine accumulation in Pseudomonas taiwanensis to enable high-yield production of trans-cinnamate.

    Front. Bioeng. Biotechnol. 2019; 7: 312

    • Volmer J.
    • et al.

    Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.

    Biotechnol. Bioeng. 2019; 116: 1089-1101

    • Wierckx N.J.P.
    • et al.

    Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.

    Appl. Environ. Microbiol. 2005; 71: 8221-8227

    • Heerema L.
    • et al.

    In situ phenol removal from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction.

    Biochem. Eng. J. 2011; 53: 245-252

    • Heipieper H.J.
    • et al.

    Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems.

    Appl. Microbiol. Biotechnol. 2007; 74: 961-973

    • Nikel P.I.
    • et al.

    Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress.

    ISME J. 2021; 15: 1751-1766

    • Kohlstedt M.
    • et al.

    From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida.

    Metab. Eng. 2018; 47: 279-293

    • Utomo R.N.C.
    • et al.

    Defined microbial mixed culture for utilization of polyurethane monomers.

    ACS Sustain. Chem. Eng. 2020; 8: 17466-17474

    • Verhoef S.
    • et al.

    Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.

    Appl. Environ. Microbiol. 2009; 75: 931-936

    • Verhoef S.
    • et al.

    Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.

    J. Biotechnol. 2007; 132: 49-56

    • Wery J.
    • et al.

    A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical.

    Appl. Microbiol. Biotechnol. 2000; 54: 180-185

    • Karande R.
    • et al.

    Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.

    Biotechnol. Bioeng. 2018; 115: 312-320

    • Long C.P.
    • et al.

    Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis.

    Metab. Eng. 2017; 44: 191-197

    • Fernández-Llamosas H.
    • et al.

    Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory.

    Sci. Rep. 2017; 7: 16046

    • Coyer J.A.
    • et al.

    N2 fixation in marine heterotrophic bacteria: dynamics of environmental and molecular regulation.

    Proc. Natl. Acad. Sci. 1996; 93: 3575-3580

    • Conley B.E.
    • et al.

    A hybrid extracellular electron transfer pathway enhances the survival of Vibrio natriegens.

    Appl. Environ. Microbiol. 2020; 86: e01253-e01320

    • Schilling C.
    • et al.

    Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365.

    Metab. Eng. 2020; 61: 381-388

    • Adlakha N.
    • et al.

    Insight into metabolic pathways of the potential biofuel producer, Paenibacillus polymyxa ICGEB2008.

    Biotechnol. Biofuels. 2015; 8: 159

    • Grady E.N.
    • et al.

    Current knowledge and perspectives of Paenibacillus: a review.

    Microb. Cell Factories. 2016; 15: 203

    • Jeong H.
    • et al.

    Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health.

    Front. Microbiol. 2019; 10: 467

    • Song C.W.
    • et al.

    CRISPR-Cas9 mediated engineering of Bacillus licheniformis for industrial production of (2R,3S)-butanediol.

    Biotechnol. Prog. 2021; 37e3072

    • Yang T.
    • et al.

    Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.

    PLoS One. 2013; 8e76149

    • Yan P.-F.
    • et al.

    Production of high levels of chirally pure d-2,3-butanediol with a newly isolated Bacillus strain.

    ACS Sustain. Chem. Eng. 2017; 5: 11016-11023

    • Weselowski B.
    • et al.

    Isolation, identification, and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    BMC Microbiol. 2016; 16: 244

    • Pasari N.
    • et al.

    Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment.

    Sci. Rep. 2019; 9: 6091

    • Delépine B.
    • et al.

    Charting the metabolic landscape of the facultative methylotroph Bacillus methanolicus.

    mSystems. 2020; 5e00745–e00820

    • Bozdag A.
    • et al.

    Growth of Bacillus methanolicus in 2 M methanol at 50°C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    J. Ind. Microbiol. Biotechnol. 2015; 42: 1027-1038

    • Brautaset T.
    • et al.

    Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C.

    Appl. Microbiol. Biotechnol. 2007; 74: 22-34

    • Brautaset T.
    • et al.

    Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.

    J. Bacteriol. 2004; 186: 1229-1238

    • Irla M.
    • et al.

    Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production.

    Front. Microbiol. 2016; 7: 1481

    • Schultenkämper K.
    • et al.

    Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus.

    Appl. Microbiol. Biotechnol. 2019; 103: 5879-5889

    • Heggeset T.M.B.
    • et al.

    Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.

    Appl. Environ. Microbiol. 2012; 78: 5170-5181

    • Carnicer M.
    • et al.

    Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.

    Microb. Cell Factories. 2016; 15: 92

    • Chen A.Y.
    • Lan E.I.

    Chemical production from methanol using natural and synthetic methylotrophs.

    Biotechnol. J. 2020; 151900356

    • Drejer E.B.
    • et al.

    Methanol-based acetoin production by genetically engineered Bacillus methanolicus.

    Green Chem. 2020; 22: 788-802

    • Komives C.F.
    • et al.

    Growth of Bacillus methanolicus in seawater-based media.

    J. Ind. Microbiol. Biotechnol. 2005; 32: 61-66

  • PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00190-6?rss=yes

    spot_img

    Latest Intelligence

    spot_img