Connect with us

Quantum

ETSI / IQC Quantum Safe Cryptography Virtual Event, 27- 28 October 2020, Online

Avatar

Published

on

ETSI

The 8th ETSI/IQC Quantum Safe Cryptography workshop will be a virtual event. In light of the global COVID-19 situation and the related restrictions, the Programme Committee is reformatting the event into online sessions that will be available in a variety of formats.

As we increasingly rely on cyber technologies, we are ever more vulnerable to cyber-attacks. The cybersecurity tools at the centre of protecting our business functions, connected devices and information assets from cyber threats rely on cryptographic tools and standards that will be broken by emerging quantum technologies. Planning and preparing is critical. A new suite of tools resilient to quantum computers must be standardized and deployed in order to maintain the availability and reliability of cyber systems and protect confidentiality and integrity.

The ETSI/IQC Quantum Safe Cryptography virtual event will be composed of a series of webinars and panel discussions that will bring together diverse participants in the quantum-safe cybersecurity community to facilitate the knowledge exchange and collaboration required to transition cyber infrastructures and business practices to make them safe in an era with quantum computers.

  • Virtual Executive Track debating on the state of the quantum threat and quantum risk management is organized in partnership with TelecomTV and will include much online content, interviews, status presentations and also several possibilities for the audience to interact with the expert speakers and panellists.
    The track, designed for business executives, including CEOs, CTOs, CIOs and CISOs will run over 27 and 28 October 2020.
  • Virtual Technical Track composed of a series of selected and recorded technical presentations and poster sessions will be available for the audience around the same time frame.
    The Programme Committee is currently calling for presentations and interested contributors should submit their contributions by 24 August 2020. Selected talks will be recorded and given virtually around the end of October.

Read more about the event here.

Source: https://www.quantumcommshub.net/events/etsi-iqc-quantum-safe-cryptography-virtual-event-27-28-october-2020-online/

Quantum

Hub job opportunity!

Avatar

Published

on

University of Cambridge

The Department of Engineering, University of Cambridge, seeks to appoint a Research Associate to work on Quantum Communications as part of the Quantum Communications Hub, until 30 November 2022, extendable for another 2 years.

The post holder will be located in the Electrical Engineering Building on the West Cambridge Site, Cambridge, UK.

The key responsibilities and duties are to maintain the network and introduce new systems for trial. This will involve design, construction and assessment of sub-systems. Examples of tests are the hybrid Continuous Variable (CV) QKD system, the new Quantum Alarm, and options for carrying out signal processing using CV techniques. Preference will be given to candidates with demonstrated quantum or photonic communications experimental aptitude in relevant areas of research and an ability to work within a team. Experience of DSP/FPGA programming would be an advantage.

The qualifications required to perform the role are to have obtained a PhD in Electronic Engineering, Physics, Applied Maths, Computer Science, or a related discipline. A good publication record would be an advantage.

Salary Ranges: Research Associate: £32,816 – £40,322

Fixed-term: The funds for this post are available until 30 November 2022 in the first instance.

For more information regarding this position follow this link.

Source: https://www.quantumcommshub.net/news/hub-job-opportunity/

Continue Reading

Quantum

Quantum Algorithms for Simulating the Lattice Schwinger Model

Avatar

Published

on

Alexander F. Shaw1,5, Pavel Lougovski1, Jesse R. Stryker2, and Nathan Wiebe3,4

1Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
2Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, U.S.A.
3Department of Physics, University of Washington, Seattle, WA 98195, U.S.A.
4Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
5Department of Physics, University of Maryland, College Park, Maryland 20742, U.S.A.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The Schwinger model (quantum electrodynamics in 1+1 dimensions) is a testbed for the study of quantum gauge field theories. We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings. In particular, we perform a tight analysis of low-order Trotter formula simulations of the Schwinger model, using recently derived commutator bounds, and give upper bounds on the resources needed for simulations in both scenarios. In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x^{-1/2}$ and electric field cutoff $x^{-1/2}Lambda$ can be simulated on a quantum computer for time $2xT$ using a number of $T$-gates or CNOTs in $widetilde{O}( N^{3/2} T^{3/2} sqrt{x} Lambda )$ for fixed operator error. This scaling with the truncation $Lambda$ is better than that expected from algorithms such as qubitization or QDRIFT. Furthermore, we give scalable measurement schemes and algorithms to estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable–the mean pair density. Finally, we bound the root-mean-square error in estimating this observable via simulation as a function of the diamond distance between the ideal and actual CNOT channels. This work provides a rigorous analysis of simulating the Schwinger model, while also providing benchmarks against which subsequent simulation algorithms can be tested.

► BibTeX data

► References

[1] D Aharonov. Quantum circuits with mixed states. In Proc. 30th Annual ACM Symposium on Theory of Computing, 1998. ACM Press, 1998. 10.1145/​276698.276708.
https:/​/​doi.org/​10.1145/​276698.276708

[2] Dorit Aharonov, Amnon Ta-Shma, and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 20–29. ACM, 2003. 10.1145/​780542.780546.
https:/​/​doi.org/​10.1145/​780542.780546

[3] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott Lawrence, and Neill C. Warrington. Gluon field digitization for quantum computers. Phys. Rev. D, 100: 114501, Dec 2019. 10.1103/​PhysRevD.100.114501.
https:/​/​doi.org/​10.1103/​PhysRevD.100.114501

[4] A. Avkhadiev, P. E. Shanahan, and R. D. Young. Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing. Phys. Rev. Lett., 124: 080501, Feb 2020. 10.1103/​PhysRevLett.124.080501.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.080501

[5] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Physical Review A, 91 (2): 022311, 2015. 10.1103/​PhysRevA.91.022311.
https:/​/​doi.org/​10.1103/​PhysRevA.91.022311

[6] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, Uwe-Jens Wiese, and P. Zoller. Atomic Quantum Simulation of ${{mathrm{U}(N)}}$ and ${{mathrm{SU}(N)}}$ Non-Abelian Lattice Gauge Theories. Phys. Rev. Lett., 110 (12): 125303, Mar 2013. 10.1103/​PhysRevLett.110.125303.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.125303

[7] T. Banks, Leonard Susskind, and John Kogut. Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises. Physical Review D, 13 (4): 1043–1053, Feb 1976. 10.1103/​PhysRevD.13.1043.
https:/​/​doi.org/​10.1103/​PhysRevD.13.1043

[8] Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski, and Peter Zoller. Simulating lattice gauge theories within quantum technologies. The European Physical Journal D, 74 (8): 165, Aug 2020. ISSN 1434-6079. 10.1140/​epjd/​e2020-100571-8.
https:/​/​doi.org/​10.1140/​epjd/​e2020-100571-8

[9] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical review A, 52 (5): 3457, 1995. 10.1103/​PhysRevA.52.3457.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[10] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-Loud. Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics. Phys. Rev. Lett., 109: 172001, 2012. 10.1103/​PhysRevLett.109.172001.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.172001

[11] S. R. Beane, E. Chang, S. D. Cohen, William Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A. Walker-Loud. Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry. Phys. Rev. D, 87 (3): 034506, 2013. 10.1103/​PhysRevD.87.034506.
https:/​/​doi.org/​10.1103/​PhysRevD.87.034506

[12] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270 (2): 359–371, 2007. 10.1007/​s00220-006-0150-x.
https:/​/​doi.org/​10.1007/​s00220-006-0150-x

[13] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. Simulating hamiltonian dynamics with a truncated taylor series. Physical Review Letters, 114 (9): 090502, 2015. 10.1103/​PhysRevLett.114.090502.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[14] Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe. Time-dependent Hamiltonian simulation with $L^1$-norm scaling. Quantum, 4: 254, Apr 2020. ISSN 2521-327X. 10.22331/​q-2020-04-20-254.
https:/​/​doi.org/​10.22331/​q-2020-04-20-254

[15] Alex Bocharov, Martin Roetteler, and Krysta M Svore. Efficient synthesis of universal repeat-until-success quantum circuits. Physical Review Letters, 114 (8): 080502, 2015. 10.1103/​PhysRevLett.114.080502.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.080502

[16] Bruce M Boghosian and Washington Taylor IV. Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena, 120 (1-2): 30–42, 1998. 10.1016/​S0167-2789(98)00042-6.
https:/​/​doi.org/​10.1016/​S0167-2789(98)00042-6

[17] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305: 53–74, 2002. 10.1090/​conm/​305/​05215.
https:/​/​doi.org/​10.1090/​conm/​305/​05215

[18] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead. Physical Review A, 86 (5): 052329, 2012. 10.1103/​PhysRevA.86.052329.
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329

[19] Tim Byrnes and Yoshihisa Yamamoto. Simulating Lattice Gauge Theories on a Quantum Computer. Phys. Rev. A, 73 (2): 022328, Feb 2006. 10.1103/​PhysRevA.73.022328.
https:/​/​doi.org/​10.1103/​PhysRevA.73.022328

[20] Earl Campbell. Random compiler for fast Hamiltonian simulation. Physical Review Letters, 123 (7): 070503, 2019. 10.1103/​PhysRevLett.123.070503.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.070503

[21] Andrew M Childs and Robin Kothari. Simulating sparse Hamiltonians with star decompositions. In Conference on Quantum Computation, Communication, and Cryptography, pages 94–103. Springer, 2010. 10.1007/​978-3-642-18073-6_8.
https:/​/​doi.org/​10.1007/​978-3-642-18073-6_8

[22] Andrew M Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information & Computation, 12 (11-12): 901–924, 2012.

[23] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115 (38): 9456–9461, 2018. 10.1073/​pnas.1801723115.
https:/​/​doi.org/​10.1073/​pnas.1801723115

[24] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. A theory of trotter error. arXiv:1912.08854, 2019.
arXiv:1912.08854

[25] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, and U. van Kolck. Ground-state properties of $^{4}$He and $^{16}$O extrapolated from lattice QCD with pionless EFT. Phys. Lett. B, 772: 839–848, 2017. 10.1016/​j.physletb.2017.07.048.
https:/​/​doi.org/​10.1016/​j.physletb.2017.07.048

[26] Michael Creutz. Monte Carlo study of quantized SU (2) gauge theory. Phys. Rev. D, 21 (8): 2308, 1980. 10.1103/​PhysRevD.21.2308.
https:/​/​doi.org/​10.1103/​PhysRevD.21.2308

[27] Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Research, 2: 023015, Apr 2020. 10.1103/​PhysRevResearch.2.023015.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023015

[28] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-depth quantum carry-lookahead adder. Quantum Info. Comput., 6 (4): 351–369, Jul 2006. ISSN 1533-7146.

[29] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum gate sets. Physical Review Letters, 102 (11): 110502, 2009. 10.1103/​PhysRevLett.102.110502.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.110502

[30] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21 (6): 467–488, June 1982. ISSN 1572-9575. 10.1007/​BF02650179.
https:/​/​doi.org/​10.1007/​BF02650179

[31] Craig Gidney. Halving the cost of quantum addition. Quantum, 2 (74): 10–22331, 2018. 10.22331/​q-2018-06-18-74.
https:/​/​doi.org/​10.22331/​q-2018-06-18-74

[32] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204. ACM, 2019. 10.1145/​3313276.3316366.
https:/​/​doi.org/​10.1145/​3313276.3316366

[33] Jeongwan Haah, Matthew Hastings, Robin Kothari, and Guang Hao Low. Quantum algorithm for simulating real time evolution of lattice hamiltonians. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 350–360. IEEE, 2018. 10.1109/​FOCS.2018.00041.
https:/​/​doi.org/​10.1109/​FOCS.2018.00041

[34] Siddhartha Harmalkar, Henry Lamm, and Scott Lawrence. Quantum Simulation of Field Theories Without State Preparation. arXiv:2001.11490 [hep-lat, physics:quant-ph], Jan 2020.
arXiv:2001.11490

[35] Jacky Huyghebaert and Hans De Raedt. Product formula methods for time-dependent Schrodinger problems. Journal of Physics A: Mathematical and General, 23 (24): 5777, 1990. 10.1088/​0305-4470/​23/​24/​019.
https:/​/​doi.org/​10.1088/​0305-4470/​23/​24/​019

[36] Takashi Inoue, Sinya Aoki, Bruno Charron, Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, Noriyoshi Ishii, Keiko Murano, Hidekatsu Nemura, and Kenji Sasaki. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD. Phys. Rev. C, 91 (1): 011001, 2015. 10.1103/​PhysRevC.91.011001.
https:/​/​doi.org/​10.1103/​PhysRevC.91.011001

[37] Takumi Iritani, Sinya Aoki, Takumi Doi, Shinya Gongyo, Tetsuo Hatsuda, Yoichi Ikeda, Takashi Inoue, Noriyoshi Ishii, Hidekatsu Nemura, and Kenji Sasaki. Systematics of the HAL QCD potential at low energies in lattice QCD. Phys. Rev. D, 99: 014514, Jan 2019. 10.1103/​PhysRevD.99.014514.
https:/​/​doi.org/​10.1103/​PhysRevD.99.014514

[38] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A, 87 (2): 022328, 2013. 10.1103/​PhysRevA.87.022328.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328

[39] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336 (6085): 1130–1133, Jun 2012. ISSN 0036-8075, 1095-9203. 10.1126/​science.1217069.
https:/​/​doi.org/​10.1126/​science.1217069

[40] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum computation of scattering in scalar quantum field theories. Quantum Info. Comput., 14 (11-12): 1014–1080, Sep 2014. ISSN 1533-7146.

[41] Johannes Kirscher, Nir Barnea, Doron Gazit, Francesco Pederiva, and Ubirajara van Kolck. Spectra and Scattering of Light Lattice Nuclei from Effective Field Theory. Phys. Rev. C, 92 (5): 054002, 2015. 10.1103/​PhysRevC.92.054002.
https:/​/​doi.org/​10.1103/​PhysRevC.92.054002

[42] Ian D Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik. Bounding the costs of quantum simulation of many-body physics in real space. Journal of Physics A: Mathematical and Theoretical, 50 (30): 305301, 2017. 10.1088/​1751-8121/​aa77b8.
https:/​/​doi.org/​10.1088/​1751-8121/​aa77b8

[43] Ian D Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120 (11): 110501, 2018. 10.1103/​PhysRevLett.120.110501.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.110501

[44] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev., A98 (3): 032331, 2018. 10.1103/​PhysRevA.98.032331.
https:/​/​doi.org/​10.1103/​PhysRevA.98.032331

[45] Natalie Klco and Martin J. Savage. Digitization of scalar fields for quantum computing. Phys. Rev., A99 (5): 052335, 2019. 10.1103/​PhysRevA.99.052335.
https:/​/​doi.org/​10.1103/​PhysRevA.99.052335

[46] Natalie Klco, Martin J. Savage, and Jesse R. Stryker. SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Phys. Rev. D, 101: 074512, Apr 2020. 10.1103/​PhysRevD.101.074512.
https:/​/​doi.org/​10.1103/​PhysRevD.101.074512

[47] Martin Kliesch, Christian Gogolin, and Jens Eisert. Lieb-Robinson bounds and the simulation of time-evolution of local observables in lattice systems. In Many-Electron Approaches in Physics, Chemistry and Mathematics, pages 301–318. Springer, 2014. 10.1007/​978-3-319-06379-9_17.
https:/​/​doi.org/​10.1007/​978-3-319-06379-9_17

[48] John Kogut and Leonard Susskind. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 11: 395–408, Jan 1975. 10.1103/​PhysRevD.11.395.
https:/​/​doi.org/​10.1103/​PhysRevD.11.395

[49] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al. Towards quantum chemistry on a quantum computer. Nature chemistry, 2 (2): 106, 2010. 10.1038/​nchem.483.
https:/​/​doi.org/​10.1038/​nchem.483

[50] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996. 10.1126/​science.273.5278.1073.
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[51] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by qubitization. Quantum, 3: 163, 2019. 10.22331/​q-2019-07-12-163.
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

[52] Alexandru Macridin, Panagiotis Spentzouris, James Amundson, and Roni Harnik. Electron-Phonon Systems on a Universal Quantum Computer. Phys. Rev. Lett., 121 (11): 110504, 2018. 10.1103/​PhysRevLett.121.110504.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.110504

[53] G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller, and A. Bermudez. ${{{mathbb{Z}}_{N}}}$ gauge theories coupled to topological fermions: ${{{mathrm{QED}}}}_{2}$ with a quantum mechanical ${theta}$ angle. Phys. Rev. B, 100: 115152, Sep 2019. 10.1103/​PhysRevB.100.115152.
https:/​/​doi.org/​10.1103/​PhysRevB.100.115152

[54] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. Real-Time Dynamics of Lattice Gauge Theories with a Few-Qubit Quantum Computer. Nature, 534 (7608): 516–519, Jun 2016. ISSN 1476-4687. 10.1038/​nature18318.
https:/​/​doi.org/​10.1038/​nature18318

[55] A. Mezzacapo, E. Rico, C. Sabín, I. L. Egusquiza, L. Lamata, and E. Solano. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. Phys. Rev. Lett., 115 (24): 240502, Dec 2015. 10.1103/​PhysRevLett.115.240502.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.240502

[56] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler, Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter Zoller. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys., 19 (10): 103020, 2017. ISSN 1367-2630. 10.1088/​1367-2630/​aa89ab.
https:/​/​doi.org/​10.1088/​1367-2630/​aa89ab

[57] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. AAPT, 2002. 10.1119/​1.1463744.
https:/​/​doi.org/​10.1119/​1.1463744

[58] NPLQCD Collaboration, Silas R. Beane, Emmanuel Chang, William Detmold, Kostas Orginos, Assumpta Parreño, Martin J. Savage, and Brian C. Tiburzi. Ab Initio Calculation of the $mathrm{np}rightarrowmathrm{d}gamma$ Radiative Capture Process. Phys. Rev. Lett., 115 (13): 132001, Sep 2015. 10.1103/​PhysRevLett.115.132001.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.132001

[59] NPLQCD Collaboration, Martin J. Savage, Phiala E. Shanahan, Brian C. Tiburzi, Michael L. Wagman, Frank Winter, Silas R. Beane, Emmanuel Chang, Zohreh Davoudi, William Detmold, and Kostas Orginos. Proton-Proton Fusion and Tritium $beta$ Decay from Lattice Quantum Chromodynamics. Phys. Rev. Lett., 119 (6): 062002, Aug 2017. 10.1103/​PhysRevLett.119.062002.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.062002

[60] NuQS Collaboration, Henry Lamm, Scott Lawrence, and Yukari Yamauchi. General methods for digital quantum simulation of gauge theories. Phys. Rev. D, 100 (3): 034518, Aug 2019. 10.1103/​PhysRevD.100.034518.
https:/​/​doi.org/​10.1103/​PhysRevD.100.034518

[61] Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. ACM Transactions on Computation Theory (TOCT), 5 (3): 1–33, 2013. 10.1145/​2493252.2493256.
https:/​/​doi.org/​10.1145/​2493252.2493256

[62] Indrakshi Raychowdhury and Jesse R Stryker. Loop, string, and hadron dynamics in SU(2) Hamiltonian lattice gauge theories. Physical Review D, 101 (11): 114502, 2020. 10.1103/​PhysRevD.101.114502.
https:/​/​doi.org/​10.1103/​PhysRevD.101.114502

[63] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences, 114 (29): 7555–7560, 2017. 10.1073/​pnas.1619152114.
https:/​/​doi.org/​10.1073/​pnas.1619152114

[64] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Montangero. Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation. Phys. Rev. Lett., 112 (20): 201601, May 2014. 10.1103/​PhysRevLett.112.201601.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.201601

[65] Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Immanuel Bloch, and Monika Aidelsburger. Floquet Approach to $mathbb{Z}_2$ Lattice Gauge Theories with Ultracold Atoms in Optical Lattices. Nat. Phys., 15 (11): 1168–1173, Nov 2019. ISSN 1745-2481. 10.1038/​s41567-019-0649-7.
https:/​/​doi.org/​10.1038/​s41567-019-0649-7

[66] Julian Schwinger. Gauge invariance and mass. ii. Phys. Rev., 128: 2425–2429, Dec 1962. 10.1103/​PhysRev.128.2425.
https:/​/​doi.org/​10.1103/​PhysRev.128.2425

[67] Rolando D. Somma. Quantum simulations of one dimensional quantum systems. arXiv:1503.06319, 2015.
arXiv:1503.06319

[68] Rolando D Somma. A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation. Journal of Mathematical Physics, 57 (6): 062202, 2016. 10.1063/​1.4952761.
https:/​/​doi.org/​10.1063/​1.4952761

[69] Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics, 32 (2): 400–407, 1991. 10.1063/​1.529425.
https:/​/​doi.org/​10.1063/​1.529425

[70] Krysta M. Svore, Matthew B. Hastings, and Michael Freedman. Faster phase estimation. Quantum Info. Comput., 14 (3-4): 306–328, March 2014. ISSN 1533-7146.

[71] L. Tagliacozzo, A. Celi, P. Orland, M. W. Mitchell, and M. Lewenstein. Simulation of non-Abelian gauge theories with optical lattices. Nat. Commun., 4: 2615, Oct 2013. ISSN 2041-1723. 10.1038/​ncomms3615.
https:/​/​doi.org/​10.1038/​ncomms3615

[72] John Watrous. The theory of quantum information. Cambridge University Press, 2018. 10.1017/​9781316848142.
https:/​/​doi.org/​10.1017/​9781316848142

[73] Dave Wecker, Bela Bauer, Bryan K Clark, Matthew B Hastings, and Matthias Troyer. Gate-count estimates for performing quantum chemistry on small quantum computers. Physical Review A, 90 (2): 022305, 2014. 10.1103/​PhysRevA.90.022305.
https:/​/​doi.org/​10.1103/​PhysRevA.90.022305

[74] Dave Wecker, Matthew B Hastings, Nathan Wiebe, Bryan K Clark, Chetan Nayak, and Matthias Troyer. Solving strongly correlated electron models on a quantum computer. Physical Review A, 92 (6): 062318, 2015. 10.1103/​PhysRevA.92.062318.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318

[75] Nathan Wiebe and Chris Granade. Efficient bayesian phase estimation. Physical review letters, 117 (1): 010503, 2016. 10.1103/​PhysRevLett.117.010503.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.010503

[76] Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical analysis using repeat-until-success circuits. Quantum Information & Computation, 16 (1-2): 134–178, 2016.

[77] Nathan Wiebe, Dominic Berry, Peter Høyer, and Barry C Sanders. Higher order decompositions of ordered operator exponentials. Journal of Physics A: Mathematical and Theoretical, 43 (6): 065203, 2010. 10.1088/​1751-8113/​43/​6/​065203.
https:/​/​doi.org/​10.1088/​1751-8113/​43/​6/​065203

[78] U.-J. Wiese. Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories. Ann. Phys., 525 (10-11): 777–796, 2013. ISSN 1521-3889. 10.1002/​andp.201300104.
https:/​/​doi.org/​10.1002/​andp.201300104

[79] Uwe-Jens Wiese. Towards quantum simulating QCD. Nucl. Phys. A, 931: 246–256, Nov 2014. ISSN 0375-9474. 10.1016/​j.nuclphysa.2014.09.102.
https:/​/​doi.org/​10.1016/​j.nuclphysa.2014.09.102

[80] Kenneth G. Wilson. Confinement of quarks. Phys. Rev. D, 10: 2445–2459, Oct 1974. 10.1103/​PhysRevD.10.2445.
https:/​/​doi.org/​10.1103/​PhysRevD.10.2445

[81] T. Yamazaki, Y. Kuramashi, and A. Ukawa. Helium Nuclei in Quenched Lattice QCD. Phys. Rev. D, 81: 111504, 2010. 10.1103/​PhysRevD.81.111504.
https:/​/​doi.org/​10.1103/​PhysRevD.81.111504

[82] Takeshi Yamazaki, Ken-ichi Ishikawa, Yoshinobu Kuramashi, and Akira Ukawa. Helium nuclei, deuteron and dineutron in 2+1 flavor lattice QCD. Phys. Rev. D, 86: 074514, 2012. 10.1103/​PhysRevD.86.074514.
https:/​/​doi.org/​10.1103/​PhysRevD.86.074514

[83] Takeshi Yamazaki, Ken-ichi Ishikawa, Yoshinobu Kuramashi, and Akira Ukawa. Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD. Phys. Rev. D, 92 (1): 014501, 2015. 10.1103/​PhysRevD.92.014501.
https:/​/​doi.org/​10.1103/​PhysRevD.92.014501

[84] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point quantum search with an optimal number of queries. Physical review letters, 113 (21): 210501, 2014. 10.1103/​PhysRevLett.113.210501.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210501

[85] Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1969): 313–322, 1998. 10.1098/​rspa.1998.0162.
https:/​/​doi.org/​10.1098/​rspa.1998.0162

[86] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory. Phys. Rev. Lett., 110 (12): 125304, Mar 2013. 10.1103/​PhysRevLett.110.125304.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.125304

[87] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. Digital Quantum Simulation of $mathbb{{Z}}_2$ Lattice Gauge Theories with Dynamical Fermionic Matter. Phys. Rev. Lett., 118 (7): 070501, Feb 2017. 10.1103/​PhysRevLett.118.070501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.070501

Cited by

[1] Indrakshi Raychowdhury and Jesse R. Stryker, “Solving Gauss’s Law on Digital Quantum Computers with Loop-String-Hadron Digitization”, arXiv:1812.07554.

[2] Christopher David White, ChunJun Cao, and Brian Swingle, “Conformal field theories are magical”, arXiv:2007.01303.

[3] Anthony Ciavarella, “An Algorithm for Quantum Computation of Particle Decays”, arXiv:2007.04447.

[4] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor, “Faster Digital Quantum Simulation by Symmetry Protection”, arXiv:2006.16248.

The above citations are from SAO/NASA ADS (last updated successfully 2020-08-12 00:44:15). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2020-08-12 00:44:14).

Source: https://quantum-journal.org/papers/q-2020-08-10-306/

Continue Reading

Quantum

Mapping graph state orbits under local complementation

Avatar

Published

on


Jeremy C. Adcock1, Sam Morley-Short1, Axel Dahlberg2, and Joshua W. Silverstone1

1Quantum Engineering Technology (QET) Labs, H. H. Wills Physics Laboratory & Department of Electrical & Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
2QuTech – TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Graph states, and the entanglement they posses, are central to modern quantum computing and communications architectures. Local complementation – the graph operation that links all local-Clifford equivalent graph states – allows us to classify all stabiliser states by their entanglement. Here, we study the structure of the orbits generated by local complementation, mapping them up to 9 qubits and revealing a rich hidden structure. We provide programs to compute these orbits, along with our data for each of the $587$ orbits up to $9$ qubits and a means to visualise them. We find direct links between the connectivity of certain orbits with the entanglement properties of their component graph states. Furthermore, we observe the correlations between graph-theoretical orbit properties, such as diameter and colourability, with Schmidt measure and preparation complexity and suggest potential applications. It is well known that graph theory and quantum entanglement have strong interplay – our exploration deepens this relationship, providing new tools with which to probe the nature of entanglement.

Graph states are ubiquitous representations of entanglement in quantum information science, and classify the most studied set of quantum states—clifford states—by the entanglement they possess.

However, many graph states are locally equivalent to one another, that is, they possess the same type of entanglement. Graph states which are locally equivalent can be transformed into one another by successive applications of the graph operation local complementation (example shown above). Using this operation, we can analyse only graph structure of the state, which is much simpler than analysing the exponentially large quantum state vector. This equivalence of graph states has been studied previously, with all graph states up to 12 qubits classified.

However, local complementation gives us more than sets of locally equivalent graphs: it also gives us an orbit (example shown above) which tells us how different graphs are related via local complementation. In this work we study these orbits, and relate their properties to properties of the entangled quantum states they contain. We find that orbit properties, such as colourability, correlate with entanglement properties, such as schmidt measure, and discuss applications of local complementation in quantum technology.

► BibTeX data

► References

[1] Raussendorf, R. Measurement-based quantum computation with cluster states. International Journal of Quantum Information 7, 1053–1203 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.68.022312

[2] Veldhorst, M., Eenink, H., Yang, C. & Dzurak, A. Silicon cmos architecture for a spin-based quantum computer. Nature Communications 8, 1766 (2017).
https:/​/​doi.org/​10.1038/​s41467-017-01905-6

[3] Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Science Advances 3, e1601540 (2017).
https:/​/​doi.org/​10.1126/​sciadv.1601540

[4] Alexander, R. N. et al. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Physical Review A 94, 032327 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.032327

[5] Asavanant, W. et al. Time-domain multiplexed 2-dimensional cluster state: Universal quantum computing platform. Science366, 373-376 (2019).
https:/​/​doi.org/​10.1126/​science.aay2645

[6] Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014).
https:/​/​doi.org/​10.1038/​nature13171

[7] Markham, D. & Sanders, B. C. Graph states for quantum secret sharing. Physical Review A 78, 042309 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.042309

[8] Ji, Z., Chen, J., Wei, Z. & Ying, M. The LU-LC conjecture is false. arXiv preprint arXiv:0709.1266 (2007).
arXiv:0709.1266

[9] Cabello, A., López-Tarrida, A. J., Moreno, P. & Portillo, J. R. Entanglement in eight-qubit graph states. Physics Letters A 373, 2219–2225 (2009).
https:/​/​doi.org/​10.1016/​j.physleta.2009.04.055

[10] Anders, S. & Briegel, H. J. Fast simulation of stabilizer circuits using a graph-state representation. Physical Review A 73, 022334 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.022334

[11] Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Physical Review A 69, 062311 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.69.062311

[12] Van den Nest, M., Dehaene, J. & De Moor, B. Graphical description of the action of local Clifford transformations on graph states. Physical Review A 69, 022316 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.69.022316

[13] Hein, M. et al. Multiparty entanglement in graph states. arXiv preprint quant-ph/​0602096 (2006).
arXiv:quant-ph/0602096

[14] Dahlberg, A. & Wehner, S. Transforming graph states using single-qubit operations. Phil. Trans. R. Soc. A 376, 20170325 (2018).
https:/​/​doi.org/​10.1098/​rsta.2017.0325

[15] Dahlberg, A., Helsen, J. & Wehner, S. The complexity of the vertex-minor problem. arXiv preprint arXiv:1906.05689 (2019).
arXiv:1906.05689

[16] Danielsen, L. E. & Parker, M. G. On the classification of all self-dual additive codes over GF(4) of length up to 12. Journal of Combinatorial Theory, Series A 113, 1351–1367 (2006).
https:/​/​doi.org/​10.1016/​j.jcta.2005.12.004

[17] Cabello, A., Danielsen, L. E., Lopez-Tarrida, A. J. & Portillo, J. R. Optimal preparation of graph states. Physical Review A 83, 042314 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.83.042314

[18] Bouchet, A. An efficient algorithm to recognize locally equivalent graphs. Combinatorica 11, 315–329 (1991).
https:/​/​doi.org/​10.1007/​BF01275668

[19] Van den Nest, M., Dehaene, J. & De Moor, B. Efficient algorithm to recognize the local clifford equivalence of graph states. Physical Review A 70, 034302 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.034302

[20] Dahlberg, A., Helsen, J. & Wehner, S. How to transform graph states using single-qubit operations: computational complexity and algorithms. arXiv preprint arXiv:1805.05306 (2018).
arXiv:1805.05306

[21] Van den Nest, M., Dür, W., Vidal, G. & Briegel, H. Classical simulation versus universality in measurement-based quantum computation. Physical Review A 75, 012337 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.012337

[22] Dahlberg, A., Helsen, J. & Wehner, S. Counting single-qubit clifford equivalent graph states is #p-complete. arXiv preprint arXiv:1907.08024 (2019).
https:/​/​doi.org/​10.1063/​1.5120591
arXiv:1907.08024

[23] Adcock, J. C., Morley-Short, S., Silverstone, J. W. & Thompson, M. G. Hard limits on the postselectability of optical graph states. Quantum Science and Technology 4, 015010 (2019).
https:/​/​doi.org/​10.1088/​2058-9565/​aae950

[24] Morley-Short, S., Graph state compass (2018).
https:/​/​doi.org/​10.5281/​zenodo.3692712

[25] Data and code to accompany this manuscript: (2020).
https:/​/​doi.org/​10.5281/​zenodo.3757948

[26] Rokicki, T., Kociemba, H., Davidson, M. & Dethridge, J. The diameter of the Rubik’s cube group is twenty. SIAM Review 56, 645–670 (2014).
https:/​/​doi.org/​10.1137/​120867366

[27] McKay, B. D. & Piperno, A. Practical graph isomorphism II. Journal of Symbolic Computation 60, 94–112 (2014).
https:/​/​doi.org/​10.1016/​j.jsc.2013.09.003

[28] Eisert, J. & Briegel, H. J. Schmidt measure as a tool for quantifying multiparticle entanglement. Physical Review A 64, 022306 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.022306

[29] Schlingemann, D. & Werner, R.F. Quantum error-correcting codes associated with graphs. Physical Review A 65, 012308 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.65.012308

[30] Dür, W., Aschauer, H. & Briegel, H.-J Multiparticle entanglement purification for graph states. Physical review letters 91, 107903 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.91.107903

[31] Erdős, P. & Rényi, A. Asymmetric graphs. Acta Mathematica Hungarica 14, 295–315 (1963).
https:/​/​doi.org/​10.1007/​BF01895716

[32] Oum, S.-I. Computing rank-width exactly. Information Processing Letters 109, 745–748 (2009).
https:/​/​doi.org/​10.1016/​j.ipl.2009.03.018

[33] SageMath, The Sage Mathematics Software System. (2020).
https:/​/​doi.org/​10.5281/​zenodo.820864

[34] Csárdi, G. & Nepusz, T., The igraph software package for complex network research. InterJournal Complex Systems, 1695, (2006).
https:/​/​doi.org/​10.5281/​zenodo.3709419

[35] Horvát, S., IGraph/​M. (2016).
https:/​/​doi.org/​10.5281/​zenodo.3739056

[36] Hahn, F., Pappa, A. & Eisert, J. Quantum network routing and local complementation. NPJ Quantum Information 5.1, 5-7 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0191-6

[37] Joo, J. & Feder, D. L. Edge local complementation for logical cluster states. New Journal of Physics 13, 063025 (2011).
https:/​/​doi.org/​10.1088/​1367-2630/​13/​6/​063025

[38] Zwerger, M., Dür, W. & Briegel, H. Measurement-based quantum repeaters. Physical Review A 85, 062326 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.85.062326

[39] Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Physical Review Letters 115, 020502 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.020502

[40] Morley-Short, S. et al. Physical-depth architectural requirements for generating universal photonic cluster states. Quantum Science and Technology 3, 015005 (2017).
https:/​/​doi.org/​10.1088/​2058-9565/​aa913b

[41] Rudolph, T. Physical-depth architectural requirements for generating universal photonic cluster states. APL Photonics 2, 030901 (2017).
https:/​/​doi.org/​10.1063/​1.4976737

[42] Morley-Short, S., Gimeno-Segovia, M., Rudolph, T. & Cable, H. Physical-depth architectural requirements for generating universal photonic cluster states. Quantum Science and Technology (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aaf6c4

Cited by

Source: https://quantum-journal.org/papers/q-2020-08-07-305/

Continue Reading
AR/VR9 hours ago

Gnomes & Goblins to be Wevr’s Biggest Production, 10x Larger Than the Preview

AI9 hours ago

Is It Worth Investing in a Website Builder?

AR/VR9 hours ago

How to Create a Cloud-connect AR Experience in 15 Minutes or Less

AR/VR10 hours ago

Mortal Blitz: Combat Arena’s PlayStation VR Open Beta Begins Next Week

Crowdfunding12 hours ago

AvidXchange Announces New “Tech Rising” Initiative to Remove Barriers to Technology Education

Blockchain12 hours ago

Swipe Is the Latest Project to Integrate Chainlink’s Price Oracles

Blockchain12 hours ago

Craig Wright Won’t Need to Pay Hodlnaut $60K Until Appeal Is Over, Says Counsel

Blockchain12 hours ago

Bitcoin a Hedge Against Elon Musk Mining Asteroid Gold, Say Winklevoss Twins

AR/VR13 hours ago

Solaris Offworld Combat has Been Delayed to September

Crowdfunding13 hours ago

Mastercard Announces Global Commercial Partnership With Pollinate

AR/VR13 hours ago

Oculus Social VR App ‘Venues’ to Get Overhaul in Preparation for ‘Facebook Horizon’

Blockchain13 hours ago

Thailand’s Central Bank Eyes DeFi Use Cases for Its Digital Baht

Blockchain13 hours ago

Bitcoin Proceeds of COVID-19 Business Support Scheme Fraud Seized

AR/VR15 hours ago

VR Giants’ Co-op Kickstarter Achieves Funding Success

Payments17 hours ago

Huntington Bancshares picks BillGo for faster payments

Payments18 hours ago

Banco Ripley goes live on Temenos Transact

Payments18 hours ago

OakNorth’s UK bank has approved £600m in loans since March

Payments18 hours ago

How a “Chad” minted Curve tokens early and briefly surpassed BTC’s market cap

Start Ups18 hours ago

Diplomatic ties Between Israel and UAE :Donald Trump

Publications18 hours ago

As the pandemic persists, New Zealand considers negative interest rates

Publications18 hours ago

Stock futures rise slightly after S&P 500 struggles to reach February record high

Payments19 hours ago

ABN Amro to slash size of investment bank after losses

Cannabis19 hours ago

Weed memes, explained

Publications19 hours ago

The $150 billion video game industry grapples with a murky track record on diversity

AR/VR19 hours ago

Cas & Chary Present: Top 10 ‘Half-Life: Alyx’ Mods So Far

Cleantech20 hours ago

J.B. Hunt’s 1st Delivery With Fully Electric Freightliner eCascadia

Science20 hours ago

Sabesp anuncia resultados do 2T20

Science20 hours ago

CarParts.com Announces Pricing of Public Offering of Common Stock

Blockchain20 hours ago

Four of the Top Five South Korean Banks to Offer Crypto Services

Science20 hours ago

SABESP Announces 2Q20 Results

Payments20 hours ago

Alt Lending – week ending 14th August

Science20 hours ago

Brussels Airport Company has selected Ecolog to perform COVID-19 Tests at the Brussels Airport

Publications20 hours ago

Coronavirus live updates: Congress leaves without passing relief bill; Fauci concerned with U.S. outbreak

Blockchain20 hours ago

Is Chainlink Poised for a Sell Off After Reaching New ATH?

Publications21 hours ago

China may never catch up with its commitments to the U.S. in ‘phase one’ deal, expert says

Science21 hours ago

Danke Partners with Leading Chinese Media to Release 2020 College Graduate Housing Blue Book

Blockchain21 hours ago

$12K Bitcoin Price in Sight as Retail, Institutional Traders Turn ‘Greedy’

Blockchain21 hours ago

$99 Gas Fees on Ethereum Are Crippling DeFi’s Growth

Crowdfunding21 hours ago

UK’s Federation of Small Businesses Says Next Budget Must be “Most Pro-Business Ever” to Combat Negative Effects of First Recession in 11 Years

Start Ups22 hours ago

Former New York Times reporter Alex Berenson: I’m increasingly convinced that COVID-19 is a creation of the media/technology complex. (NO – I do not mean it’s not real or was bioengineered)

Trending