Zephyrnet Logo

Epitaxial Pb on InAs nanowires for quantum devices

Date:

  • 1.

    Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    CAS  Article  Google Scholar 

  • 3.

    Pendharkar, M. et al. Parity-preserving and magnetic field resilient superconductivity in indium antimonide nanowires with tin shells. Preprint at http://arxiv.org/abs/1912.06071 (2019).

  • 4.

    Klinovaja, J. & Loss, D. Time-reversal invariant parafermions in interacting Rashba nanowires. Phys. Rev. B 90, 045118 (2014).

    CAS  Article  Google Scholar 

  • 5.

    Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Luthi, F. et al. Evolution of nanowire transmon qubits and their coherence in a magnetic field. Phys. Rev. Lett. 120, 100502 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Tosi, L. et al. Spin-orbit splitting of Andreev states revealed by microwave spectroscopy. Phys. Rev. X 9, 011010 (2019).

    CAS  Google Scholar 

  • 8.

    Hays, M. et al. Direct microwave measurement of Andreev-bound-state dynamics in a semiconductor–nanowire Josephson junction. Phys. Rev. Lett. 121, 047001 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).

    CAS  Google Scholar 

  • 10.

    Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    CAS  Article  Google Scholar 

  • 11.

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  • 12.

    Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  • 13.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Carrad, D. J. et al. Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids. Adv. Mater. 32, 1908411 (2020).

    CAS  Article  Google Scholar 

  • 18.

    Bjergfelt, M. et al. Superconducting vanadium/indium–arsenide hybrid nanowires. Nanotechnology 30, 294005 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Shen, J. et al. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nat. Commun. 9, 4801 (2018).

    Article  CAS  Google Scholar 

  • 20.

    Vaitiekenas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  • 22.

    Paajaste, J. et al. Pb/InAs nanowire Josephson junction with high critical current and magnetic flux focusing. Nano Lett. 15, 1803–1808 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Güsken, N. A. et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures. Nanoscale 9, 16735–16741 (2017).

    Article  Google Scholar 

  • 24.

    Deng, M. et al. Majorana bound state in a coupled quantum-dot hybrid–nanowire system. Science 354, 1557–1562 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Sestoft, J. E. et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater. 2, 044202 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Vaitiekėnas, S. et al. Selective-area-grown semiconductor–superconductor hybrids: a basis for topological networks. Phys. Rev. Lett. 121, 147701 (2018).

    Article  Google Scholar 

  • 27.

    Aseev, P. et al. Selectivity map for molecular beam epitaxy of advanced III–V quantum nanowire networks. Nano Lett. 19, 218–227 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Kjaergaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Shabani, J. et al. Two-dimensional epitaxial superconductor–semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  CAS  Google Scholar 

  • 30.

    Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article  CAS  Google Scholar 

  • 31.

    Su, Z. et al. Andreev molecules in semiconductor nanowire double quantum dots. Nat. Commun. 8, 585 (2017).

    Article  CAS  Google Scholar 

  • 32.

    Krizek, F. et al. Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis. Nano Lett. 17, 6090–6096 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Pentcheva, R. et al. Non-Arrhenius behavior of the island density in metal heteroepitaxy: Co on Cu (001). Phys. Rev. Lett. 90, 076101 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Venables, J. & Spiller, G. in Surface Mobilities on Solid Materials (ed. Binh, V. T.) 341–404 (Springer, 1983).

  • 36.

    Vesselinov, M. I. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (World Scientific, 2016).

  • 37.

    Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 42, 399–434 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Gramich, J., Baumgartner, A. & Schönenberger, C. Subgap resonant quasiparticle transport in normal–superconductor quantum dot devices. Appl. Phys. Lett. 108, 172604 (2016).

    Article  CAS  Google Scholar 

  • 39.

    van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  CAS  Google Scholar 

  • 40.

    Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  CAS  Google Scholar 

  • 41.

    Lee, E. J. H. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  CAS  Google Scholar 

  • 42.

    Hansen, E. B., Danon, J. & Flensberg, K. Probing electron–hole components of subgap states in Coulomb blockaded Majorana islands. Phys. Rev. B 97, 041411 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Klimovskikh, I. I. et al. Spin–orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 11, 368–374 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2015).

    CAS  Article  Google Scholar 

  • 45.

    Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    CAS  Article  Google Scholar 

  • 46.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Article  Google Scholar 

  • 47.

    Reeg, C., Loss, D. & Klinovaja, J. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime. Phys. Rev. B 97, 165425 (2018).

    CAS  Article  Google Scholar 

  • 48.

    Ménard, G. C. et al. Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer. Nat. Commun. 10, 2587 (2019).

    Article  CAS  Google Scholar 

  • 49.

    Ruby, M., Heinrich, B. W., Pascual, J. I. & Franke, K. J. Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy. Phys. Rev. Lett. 114, 157001 (2015).

    Article  CAS  Google Scholar 

  • 50.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00900-9

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?