Zephyrnet Logo

Environmental dimensions of the protein corona

Date:

  • 1.

    Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

    CAS  Google Scholar 

  • 2.

    Carrillo-Carrion, C., Carril, M. & Parak, W. J. Techniques for the experimental investigation of the protein corona. Curr. Opin. Biotechnol. 46, 106–113 (2017).

    CAS  Google Scholar 

  • 3.

    Walkey, C. D. & Chan, W. C. W. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    CAS  Google Scholar 

  • 4.

    Treuel, L. & Nienhaus, G. U. Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 4, 137–147 (2012).

    CAS  Google Scholar 

  • 5.

    Payne, C. K. A protein corona primer for physical chemists. J. Chem. Phys. 151, 130901 (2019).

    Google Scholar 

  • 6.

    Hadjidemetriou, M. & Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017). A review of corona formation from the medical perspective with a focus on the role of complement proteins, including effects on intended molecular recognition and role of corona in a range of biomedical applications.

    CAS  Google Scholar 

  • 7.

    Nasser, F. & Lynch, I. Updating traditional regulatory tests for use with novel materials: nanomaterial toxicity testing with Daphnia magna. Saf. Sci. 118, 497–504 (2019).

    Google Scholar 

  • 8.

    Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    CAS  Google Scholar 

  • 9.

    Markiewicz, M. et al. Changing environments and biomolecule coronas: consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chem. 20, 4133–4168 (2018). A comprehensive review of nanomaterial transformations under environmental conditions that summarizes trends in nanomaterial behaviour in the presence of natural organic matter based upon core composition.

    CAS  Google Scholar 

  • 10.

    Grassi, G. et al. Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. Environ. Sci. Nano 6, 2937–2947 (2019).

    CAS  Google Scholar 

  • 11.

    Svendsen, C. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020).

    CAS  Google Scholar 

  • 12.

    Padín-González, E. et al. A custom-made functionalization method to control the biological identity of nanomaterials. Nanomedicine 29, 102268 (2020).

    Google Scholar 

  • 13.

    Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).

    CAS  Google Scholar 

  • 14.

    Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS  Google Scholar 

  • 15.

    Lowry, G. V., Gregory, K. B., Apte, S. C. & Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893–6899 (2012).

    CAS  Google Scholar 

  • 16.

    Fadare, O. O. et al. Eco-corona vs protein corona: effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environ. Sci. Technol. 54, 8001–8009 (2020).

    CAS  Google Scholar 

  • 17.

    Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano 7, 1041–1060 (2020).

    CAS  Google Scholar 

  • 18.

    Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, 2000295 (2020).

    CAS  Google Scholar 

  • 19.

    Kahru, A. & Ivask, A. Mapping the dawn of nanoecotoxicological research. Acc. Chem. Res. 46, 823–833 (2013).

    CAS  Google Scholar 

  • 20.

    Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. in Frontiers of Nanoscience (eds. Lead, J. R. & Valsami-Jones, E.) 127–156 (Elsevier, 2014).

  • 21.

    Tollefson, E. J. et al. Preferential binding of cytochrome c to anionic ligand-coated gold nanoparticles: a complementary computational and experimental approach. ACS Nano 13, 6856–6866 (2019).

    CAS  Google Scholar 

  • 22.

    Daly, C. A. et al. Surface coating structure and its interaction with cytochrome c in eg6-coated nanoparticles varies with surface curvature. Langmuir 36, 5030–5039 (2020).

    CAS  Google Scholar 

  • 23.

    Kim, J. & Doudrick, K. Emerging investigator series: protein adsorption and transformation on catalytic and food-grade TiO2 nanoparticles in the presence of dissolved organic carbon. Environ. Sci. Nano 6, 1688–1703 (2019).

    CAS  Google Scholar 

  • 24.

    Shakiba, S., Hakimian, A., Barco, L. R. & Louie, S. M. Dynamic intermolecular interactions control adsorption from mixtures of natural organic matter and protein onto titanium dioxide nanoparticles. Environ. Sci. Technol. 52, 14158–14165 (2018). Mechanistic insight into the formation of a complex eco-corona that includes both natural organic matter and proteins, including characterization of simultaneous versus sequential exposure on resulting eco-corona composition.

    CAS  Google Scholar 

  • 25.

    Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano 2, 429–439 (2015).

    CAS  Google Scholar 

  • 26.

    Wan, S. et al. The ‘sweet’ side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9, 2157–2166 (2015).

    CAS  Google Scholar 

  • 27.

    Ghazaryan, A., Landfester, K. & Mailänder, V. Protein deglycosylation can drastically affect the cellular uptake. Nanoscale 11, 10727–10737 (2019).

    CAS  Google Scholar 

  • 28.

    Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O. C. & Mahmoudi, M. Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci. 5, 378–387 (2017).

    CAS  Google Scholar 

  • 29.

    Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: minimum information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019). Reporting guidelines to ensure high-fidelity data collection of protein corona composition to ensure reproducibility and maximize data re-usage for modelling studies in the long term.

    CAS  Google Scholar 

  • 30.

    Gunawan, C., Lim, M., Marquis, C. P. & Amal, R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J. Mater. Chem. B 2, 2060–2083 (2014).

    CAS  Google Scholar 

  • 31.

    Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    CAS  Google Scholar 

  • 32.

    Zhang, H. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11, 4569–4577 (2011).

    CAS  Google Scholar 

  • 33.

    Ruiz, G., Tripathi, K., Okyem, S. & Driskell, J. D. pH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjug. Chem. 30, 1182–1191 (2019).

    CAS  Google Scholar 

  • 34.

    Mahmoudi, M. et al. Temperature: the ‘ignored’ factor at the nanobio interface. ACS Nano 7, 6555–6562 (2013).

    CAS  Google Scholar 

  • 35.

    Goy-López, S. et al. Physicochemical characteristics of protein–NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28, 9113–9126 (2012).

    Google Scholar 

  • 36.

    Dutz, S., Wojahn, S., Gräfe, C., Weidner, A. & Clement, J. H. Influence of sterilization and preservation procedures on the integrity of serum protein-coated magnetic nanoparticles. Nanomaterials 7, 453 (2017).

    Google Scholar 

  • 37.

    Eigenheer, R. et al. Silver nanoparticle protein corona composition compared across engineered particle properties and environmentally relevant reaction conditions. Environ. Sci. Nano 1, 238–247 (2014).

    CAS  Google Scholar 

  • 38.

    Jayaram, D. T., Pustulka, S. M., Mannino, R. G., Lam, W. A. & Payne, C. K. Protein corona in response to flow: effect on protein concentration and structure. Biophys. J. 115, 209–216 (2018).

    CAS  Google Scholar 

  • 39.

    Gonçalves, S. P. C. et al. in Nanomaterials Applications for Environmental Matrices, 265–304 (Elsevier, 2019).

  • 40.

    Zhang, P. et al. Protein corona between nanoparticles and bacterial proteins in activated sludge: characterization and effect on nanoparticle aggregation. Bioresour. Technol. 250, 10–16 (2018).

    CAS  Google Scholar 

  • 41.

    Surette, M. C. & Nason, J. A. Nanoparticle aggregation in a freshwater river: the role of engineered surface coatings. Environ. Sci. Nano 6, 540–553 (2019).

    CAS  Google Scholar 

  • 42.

    Uddin, M. D. N., Desai, F. & Asmatulu, E. Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ. Chem. Lett. 18, 1073–1083 (2020).

    CAS  Google Scholar 

  • 43.

    Yue, Y. et al. Silver nanoparticle-protein interactions in intact rainbow trout gill cells. Environ. Sci. Nano 3, 1174–1185 (2016). Novel approach to characterization of the protein corona from rainbow trout gill cells to reveal nanoparticle fate through centrifugal subcellular fractionation and corona characterization of particles in the endosomes/lysosomes versus on those associated with the cell membrane, mitochondria and nucleus.

    CAS  Google Scholar 

  • 44.

    Canesi, L. et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ. Res. 150, 73–81 (2016).

    CAS  Google Scholar 

  • 45.

    Gebauer, J. S. et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679 (2012).

    CAS  Google Scholar 

  • 46.

    Xie, C. et al. Bacillus subtilis causes dissolution of ceria nanoparticles at the nano-bio interface. Environ. Sci. Nano 6, 216–223 (2019).

    CAS  Google Scholar 

  • 47.

    Jayaram, D. T., Runa, S., Kemp, M. L. & Payne, C. K. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale 9, 7595–7601 (2017).

    CAS  Google Scholar 

  • 48.

    Martinolich, A. J., Park, G., Nakamoto, M. Y., Gate, R. E. & Wheeler, K. E. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution. Environ. Sci. Technol. 46, 6355–6362 (2012).

    CAS  Google Scholar 

  • 49.

    Albanese, A. et al. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8, 5515–5526 (2014).

    CAS  Google Scholar 

  • 50.

    Li, J. et al. Self-assembly of plant protein fibrils interacting with superparamagnetic iron oxide nanoparticles. Sci. Rep. 9, 8939 (2019).

    Google Scholar 

  • 51.

    Akanbi, M. O., Hernandez, L. M., Mobarok, M. H., Veinot, J. G. C. & Tufenkji, N. QCM-D and NanoTweezer measurements to characterize the effect of soil cellulase on the deposition of PEG-coated TiO2 nanoparticles in model subsurface environments. Environ. Sci. Nano 5, 2172–2183 (2018).

    CAS  Google Scholar 

  • 52.

    Canesi, L. et al. Biomolecular coronas in invertebrate species: implications in the environmental impact of nanoparticles. NanoImpact 8, 89–98 (2017).

    Google Scholar 

  • 53.

    Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).

    CAS  Google Scholar 

  • 54.

    Pink, M., Verma, N., Kersch, C. & Schmitz-Spanke, S. Identification and characterization of small organic compounds within the corona formed around engineered nanoparticles. Environ. Sci. Nano. 5, 1420–1427 (2018).

    CAS  Google Scholar 

  • 55.

    Balbi, T. et al. Photocatalytic Fe-doped n-TiO2: from synthesis to utilization of in vitro cell models for screening human and environmental nanosafety. Resour. Effic. Technol. 3, 158–165 (2017).

    Google Scholar 

  • 56.

    Hayashi, Y. et al. Species differences take shape at nanoparticles: protein corona made of the native repertoire assists cellular interaction. Environ. Sci. Technol. 47, 14367–14375 (2013). Characterization of a species-specific response to the protein corona, whereby particles coated with native proteins were preferentially taken up compared to those with a non-native protein corona, highlighting the requirement for a more holistic approach to the eco-corona due to the wide species diversity in the environment.

    CAS  Google Scholar 

  • 57.

    Natarajan, L., Jenifer, M. A. & Mukherjee, A. Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: a comprehensive review. Environ. Res. 194, 110669 (2021).

    CAS  Google Scholar 

  • 58.

    Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from analysis of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020). Eco-corona composition acquired by nanomaterials from biomolecules secreted into the medium by the organisms provides mechanistic insights into the organisms’ response to exposure to the nanomaterials.

    CAS  Google Scholar 

  • 59.

    Bourgeault, A. et al. Interaction of TiO2 nanoparticles with proteins from aquatic organisms: the case of gill mucus from blue mussel. Environ. Sci. Pollut. Res. 24, 13474–13483 (2017).

    CAS  Google Scholar 

  • 60.

    Della Torre, C. et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 297, 92–100 (2015).

    Google Scholar 

  • 61.

    Alijagic, A., Benada, O., Kofroňová, O., Cigna, D. & Pinsino, A. Sea urchin extracellular proteins design a complex protein corona on titanium dioxide nanoparticle surface influencing immune cell behavior. Front. Immunol. 10, 2261 (2019).

    CAS  Google Scholar 

  • 62.

    Hayashi, Y. et al. Nanosilver pathophysiology in earthworms: transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology 10, 303–311 (2016). Transcriptional approaches are integrated with insights into the corona composition to reveal a mechanism of earthworm response to nanomaterials in their local environment.

    CAS  Google Scholar 

  • 63.

    Hayashi, Y. et al. Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish. Environ. Sci. Nano 4, 895–906 (2017).

    CAS  Google Scholar 

  • 64.

    Gao, J., Lin, L., Wei, A. & Sepúlveda, M. S. Protein corona analysis of silver nanoparticles exposed to fish plasma. Environ. Sci. Technol. Lett. 4, 174–179 (2017).

    CAS  Google Scholar 

  • 65.

    Canesi, L. & Procházková, P. in Nanoparticles and the Immune System: Safety and Effects 91–112 (Academic, 2013).

  • 66.

    Ostermeyer, A.-K., Kostigen Mumuper, C., Semprini, L. & Radniecki, T. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ. Sci. Technol. 47, 14403–14410 (2013).

    CAS  Google Scholar 

  • 67.

    Grintzalis, K., Lawson, T. N., Nasser, F., Lynch, I. & Viant, M. R. Metabolomic method to detect a metabolite corona on amino-functionalized polystyrene nanoparticles. Nanotoxicology 13, 783–794 (2019).

    CAS  Google Scholar 

  • 68.

    Lee, J. Y. et al. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 410, 6155–6164 (2018).

    CAS  Google Scholar 

  • 69.

    Xu, S. et al. MiRNA extraction from cell-free biofluid using protein corona formed around carboxyl magnetic nanoparticles. ACS Biomater. Sci. Eng. 4, 654–662 (2018).

    CAS  Google Scholar 

  • 70.

    Griffith, D. M., Jayaram, D. T., Spencer, D. M., Pisetsky, D. S. & Payne, C. K. DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona. Biointerphases 15, 051006 (2020). One of the first papers to demonstrate that DNA forms a part of the biomolecular corona and may offer a potential method of genetic material transfer between organisms.

    CAS  Google Scholar 

  • 71.

    Gorshkov, V., Bubis, J. A., Solovyeva, E. M., Gorshkov, M. V. & Kjeldsen, F. Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environ. Sci. Nano 6, 1089–1098 (2019).

    CAS  Google Scholar 

  • 72.

    Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    CAS  Google Scholar 

  • 73.

    Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 327, pe14 (2006).

    Google Scholar 

  • 74.

    Pisani, C. et al. The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells. PLoS ONE 12, 1–17 (2017).

    Google Scholar 

  • 75.

    Serpooshan, V. et al. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano 12, 2253–2266 (2018).

    CAS  Google Scholar 

  • 76.

    Gardea-Torresdey, J. L., Rico, C. M. & White, J. C. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol. 48, 2526–2540 (2014).

    CAS  Google Scholar 

  • 77.

    Unrine, J. M., Shoults-Wilson, W. A., Zhurbich, O., Bertsch, P. M. & Tsyusko, O. V. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ. Sci. Technol. 46, 9753–9760 (2012).

    CAS  Google Scholar 

  • 78.

    Tangaa, S. R., Selck, H., Winther-Nielsen, M. & Khan, F. R. Trophic transfer of metal-based nanoparticles in aquatic environments: a review and recommendations for future research focus. Environ. Sci. Nano 3, 966–981 (2016).

    CAS  Google Scholar 

  • 79.

    Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    CAS  Google Scholar 

  • 80.

    Tavanti, F., Pedone, A. & Menziani, M. C. Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J. Phys. Chem. C 119, 22172–22180 (2015).

    CAS  Google Scholar 

  • 81.

    Findlay, M. R., Freitas, D. N., Mobed-Miremadi, M. & Wheeler, K. E. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ. Sci. Nano 5, 64–71 (2018).

    CAS  Google Scholar 

  • 82.

    Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    CAS  Google Scholar 

  • 83.

    Duan, Y. et al. Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact 17, 100207 (2020).

    Google Scholar 

  • 84.

    Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Personalized protein coronas: a ‘key’ factor at the nanobiointerface. Biomater. Sci. 2, 1210–1221 (2014).

    CAS  Google Scholar 

  • 85.

    Tavakol, M. et al. Disease-related metabolites affect protein–nanoparticle interactions. Nanoscale 10, 7108–7115 (2018).

    CAS  Google Scholar 

  • 86.

    Tekie, F. S. M. et al. Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci. Rep. 10, 9664 (2020).

    Google Scholar 

  • 87.

    Mosquera, J. et al. Reversible control of protein corona formation on gold nanoparticles using host–guest interactions. ACS Nano 14, 5382–5391 (2020).

    CAS  Google Scholar 

  • 88.

    Williams, R. M. et al. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Bio. 17, 129–137 (2021).

    CAS  Google Scholar 

  • 89.

    Geitner, N. K. et al. Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environ. Sci. Nano 7, 13–36 (2020).

    CAS  Google Scholar 

  • 90.

    Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    CAS  Google Scholar 

  • 91.

    Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).

    CAS  Google Scholar 

  • 92.

    Singh, N. et al. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? Nanoscale Adv. 3, 2109–1229 (2021).

    Google Scholar 

  • 93.

    Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    CAS  Google Scholar 

  • 94.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    CAS  Google Scholar 

  • 95.

    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

    Google Scholar 

  • 96.

    Wigginton, N. S. et al. Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ. Sci. Technol. 44, 2163–2168 (2010).

    CAS  Google Scholar 

  • 97.

    Müller, L. K. et al. The transferability from animal models to humans: challenges regarding aggregation and protein corona formation of nanoparticles. Biomacromolecules 19, 374–385 (2018).

    Google Scholar 

  • 98.

    Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).

    Google Scholar 

  • 99.

    Bundschuh, M. et al. Nanoparticles in the environment: where do we come from, where do we go to. Environ. Sci. Eur. 30, 6 (2018).

    Google Scholar 

  • 100.

    Pradas del Real, A. E. et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environ. Sci. Technol. 50, 1759–1768 (2016).

    CAS  Google Scholar 

  • 101.

    Bakshi, M. et al. Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: a life cycle study. J. Hazard. Mater. 369, 191–198 (2019).

    CAS  Google Scholar 

  • 102.

    Vieira, S. et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 14, 463–475 (2020).

    CAS  Google Scholar 

  • 103.

    Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, 2000705 (2020).

    CAS  Google Scholar 

  • 104.

    Lv, J., Christie, P. & Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59 (2019).

    CAS  Google Scholar 

  • 105.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    CAS  Google Scholar 

  • 106.

    Natarajan, L. et al. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environ. Res. 188, 109842 (2020).

    CAS  Google Scholar 

  • 107.

    Grassi, G. et al. Interplay between extracellular polymeric substances (EPS) from a marine diatom and model nanoplastic through eco-corona formation. Sci. Total Environ. 725, 138457 (2020).

    CAS  Google Scholar 

  • 108.

    Stamps, B. W. et al. Municipal solid waste landfills harbor distinct microbiomes. Front. Microbiol. 7, 335–336 (2016).

    Google Scholar 

  • 109.

    Shaw, C. A. et al. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Nanotoxicology 10, 981–991 (2016).

    CAS  Google Scholar 

  • 110.

    Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    CAS  Google Scholar 

  • 111.

    Konduru, N. V. et al. Protein corona: implications for nanoparticle interactions with pulmonary cells. Part. Fibre Toxicol. 14, 42 (2017).

    Google Scholar 

  • 112.

    Archer, S. D. J. & Pointing, S. B. Anthropogenic impact on the atmospheric microbiome. Nat. Microbiol. 5, 229–231 (2020).

    CAS  Google Scholar 

  • 113.

    DeLeon-Rodriguez, N. et al. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl Acad. Sci. USA 110, 2575–2580 (2013).

    CAS  Google Scholar 

  • 114.

    Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R. & Sands, D. C. Ubiquity of biological ice nucleators in snowfall. Science 319, 1214–1214 (2008).

    CAS  Google Scholar 

  • 115.

    Keller, A. A. & Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett. 1, 65–70 (2014).

    CAS  Google Scholar 

  • 116.

    Surette, M. C., Nason, J. A. & Kaegi, R. The influence of surface coating functionality on the aging of nanoparticles in wastewater. Environ. Sci. Nano 6, 2470–2483 (2019).

    CAS  Google Scholar 

  • 117.

    Wimmer, A., Markus, A. A. & Schuster, M. Silver nanoparticle levels in river water: real environmental measurements and modeling approaches—a comparative study. Environ. Sci. Technol. Lett. 6, 353–358 (2019).

    CAS  Google Scholar 

  • 118.

    Kaegi, R. et al. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 47, 3866–3877 (2013).

    CAS  Google Scholar 

  • 119.

    Sharma, V. K., Filip, J., Zboril, R. & Varma, R. S. Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44, 8410–8423 (2015).

    CAS  Google Scholar 

  • 120.

    Lespes, G., Faucher, S. & Slaveykova, V. I. Natural nanoparticles, anthropogenic nanoparticles, where is the frontier? Front. Environ. Sci. 8, 71 (2020).

  • 121.

    Akdogan, Z. & Guven, B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ. Pollut. 254, 113011 (2019).

    CAS  Google Scholar 

  • 122.

    Machado, A. A. et al. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    Google Scholar 

  • 123.

    Dawson, A. et al. Uptake and depuration kinetics influence microplastic bioaccumulation and toxicity in Antarctic krill (Euphausia superba). Environ. Sci. Technol. 52, 3195–3201 (2018).

    CAS  Google Scholar 

  • 124.

    Alava, J. J. Modeling the bioaccumulation and biomagnification potential of microplastics in a cetacean foodweb of the northeastern pacific: a prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 7, 566101 (2020).

    Google Scholar 

  • 125.

    Gopinath, P. M. et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 9, 8860 (2019).

    Google Scholar 

  • 126.

    Ma, Y. et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ. Pollut. 219, 166–173 (2016).

    CAS  Google Scholar 

  • 127.

    Guo, H., Zheng, X., Luo, X. & Mai, B. Leaching of brominated flame retardants (BFRs) from BFRs-incorporated plastics in digestive fluids and the influence of bird diets. J. Hazard. Mater. 393, 122397 (2020).

    CAS  Google Scholar 

  • 128.

    Rochman, C. M., Hoh, E., Kurobe, T. & Teh, S. J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3, 3263 (2013).

    Google Scholar 

  • 129.

    Buchman, J. T. et al. Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna. Environ. Sci. Nano 7, 571–587 (2020).

    CAS  Google Scholar 

  • 130.

    Ma, Y., White, J. C., Dhankher, O. M. & Xing, B. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49, 7109–7122 (2015). Lays the groundwork for investigation of nanomaterial pathways through plants and induction of toxic responses and/or detoxification mechanisms that will inform future work in plant protein corona studies.

    CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00924-1

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?