Nano Technology
Eliciting B cell immunity against infectious diseases using nanovaccines

Published
2 months agoon

Dawood, F. S. et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 12, 687–695 (2012).
Amanat, F. & Krammer, F. SARS-CoV-2 vaccines: status report. Immunity 52, 583–589 (2020).
Cunningham, J. W. et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.5313 (2020).
Saunders, K. O. et al. Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science 366, eaay7199 (2019).
Wiehe, K. et al. Functional relevance of improbable antibody mutations for HIV broadly neutralizing antibody development. Cell Host Microbe 23, 759–765.e6 (2018).
Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354, 722–726 (2016).
Liu, W. et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193, 792–795 (2006).
Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183, 143–157 (2020). The study shows that SARS-CoV-2 infection blunts long-lived antibody responses in critically ill patients.
Eisenstein, M. Towards a universal flu vaccine. Nature 573, S50–S52 (2019).
Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).
Xu, K. et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 24, 857–867 (2018).
Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016). Seminal work demonstrating that engineered immunogen could engage B cells from HIV-uninfected individuals, generating a possibility that immunogen vaccine may elicit bnAbs in people.
Steichen, J. M. et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45, 483–496 (2016).
Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2019). The study shows that glycosylation is critical for enhanced localization to B-cell follicles and inducing humoral immunity.
Kasturi, S. P. et al. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope-specific plasma cells and humoral immunity in nonhuman primates. Sci. Immunol. 5, eabb1025 (2020).
Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019). The study highlighted a synthetic polymeric glyco-adjuvant vaccine to elicit cellular and humoral immune responses against malaria.
Purwada, A., Roy, K. & Singh, A. Engineering vaccines and niches for immune modulation. Acta Biomater. 10, 1728–1740 (2014).
Singh, A. & Peppas, N. A. Hydrogels and scaffolds for immunomodulation. Adv. Mater. 26, 6530–6541 (2014).
Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).
Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).
Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).
Cyster, J. G. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11, 989–996 (2010).
Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).
Reddy, S. T., Rehor, A., Schmoekel, H. G., Hubbell, J. A. & Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 112, 26–34 (2006).
Swartz, M. A., Hubbell, J. A. & Reddy, S. T. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin. Immunol. 20, 147–156 (2008).
Prevo, R., Banerji, S., Ni, J. & Jackson, D. G. Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1). J. Biol. Chem. 279, 52580–52592 (2004).
Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028 e1016 (2018).
Beguelin, W. et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat. Commun. 8, 877 (2017). The study reported a three-dimensional B-cell follicular organoid system that mimics the germinal centre reaction, to define a positive feedback loop in which B-cell epigenetics controls cell proliferation and humoral immunity.
Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).
Tas, J. M. et al. Visualizing antibody affinity maturation in germinal centers. Science 351, 1048–1054 (2016). The study used brainbow-confetti mice and sequencing to demonstrate B-cell clonal competition with one another.
Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020).
Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).
Jardine, J. G. et al. HIV-1 vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015).
Zhang, Y. N. et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 19, 7226–7235 (2019).
Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011). A seminal study that showed nanovaccine containing immunomodulatory adjuvants can boost the magnitude and persistence of germinal centre and antibody responses in non-human primates.
Agarwal, R. et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl Acad. Sci. USA 110, 17247–17252 (2013).
Akkaya, M. et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19, 871–884 (2018).
Pulendran, B. Immunology taught by vaccines. Science 366, 1074–1075 (2019).
Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328 e1313 (2019). The study shows that the loss of microbiome impairs seasonal influenza vaccination antibody response in human subjects with low pre-existing immunity.
Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).
Mosquera, M. J. et al. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci. Adv. 5, eaav9788 (2019). The study highlights immunomodulation under gut-mediated metabolic syndrome conditions using advanced nanomaterials.
Dosenovic, P. et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell 161, 1505–1515 (2015).
Tian, M. et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell 166, 1471–1484.e18 (2016).
Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146.e6 (2018).
Sok, D. & Burton, D. R. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 19, 1179–1188 (2018).
Kwong, P. D., Mascola, J. R. & Nabel, G. J. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat. Rev. Immunol. 13, 693–701 (2013).
Moody, M. A. et al. Immune perturbations in HIV-1-infected individuals who make broadly neutralizing antibodies. Sci. Immunol. 1, aag0851 (2016).
Haynes, B. F., Kelsoe, G., Harrison, S. C. & Kepler, T. B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30, 423–433 (2012).
Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).
Winarski, K. L. et al. Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. Proc. Natl Acad. Sci. USA 116, 15194–15199 (2019).
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
Yang, Z. Y. et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl Acad. Sci. USA 102, 797–801 (2005).
Tseng, C. T. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE 7, e35421 (2012).
Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341 (2020).
Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361–376 (2016).
Chambers, B. S., Parkhouse, K., Ross, T. M., Alby, K. & Hensley, S. E. Identification of hemagglutinin residues responsible for H3N2 antigenic drift during the 2014–2015 influenza season. Cell Rep. 12, 1–6 (2015).
Flannery, B. et al. Early estimates of seasonal influenza vaccine effectiveness — United States, January 2015. MMWR Morb. Mortal. Wkly Rep. 64, 10–15 (2015).
Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).
Deng, L. et al. Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat. Commun. 9, 359 (2018).
Kamp, H. D. et al. Design of a broadly reactive Lyme disease vaccine. npj Vaccines 5, 33 (2020).
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).
Kose, N. et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 4, eaaw6647 (2019).
Kim, S., Shah, S. B., Graney, P. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019). Review highlighting material strategies to recreate primary, secondary and tertiary immune organs in vivo and in vitro.
Purwada, A. et al. Ex vivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials 198, 27–36 (2019).
Purwada, A. & Singh, A. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat. Protoc. 12, 168–182 (2017).
Jaroentomeechai, T. et al. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat. Commun. 9, 2686 (2018).
Graney, P. et al. Organoid polymer functionality and mode of Klebsiella neumoniae membrane antigen presentation regulates ex vivo germinal center epigenetics in young and aged B cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202001232 (2020).
Havenar-Daughton, C. et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env trimer. Cell Rep. 17, 2195–2209 (2016).

You may like
-
Tesla Giga Berlin’s next-gen paint shop takes form with dipping pool deliveries
-
Exclusive: Wheels Up in talks with SPAC to go public: sources
-
Report: SPACs 2.0
-
Lockheed Martin and Boeing debut Defiant X advanced assault helicopter
-
LMF Acquisition Opportunities, Inc. (LMAOU) Prices Upsized $90M IPO
-
Horizon presents its long-range Cavorite X5 hybrid eVTOL
Nano Technology
Scientists synthetize new material for high-performance supercapacitors

Published
5 days agoon
January 20, 2021
Home > Press > Scientists synthetize new material for high-performance supercapacitors
![]() |
Photo: modified rGO supercapacitor electrodes |
Abstract:
Scientists of Tomsk Polytechnic University jointly with colleagues from the University of Lille (Lille, France) synthetized a new material based on reduced graphene oxide (rGO) for supercapacitors, energy storage devices. The rGO modification method with the use of organic molecules, derivatives of hypervalent iodine, allowed obtaining a material that stores 1.7 times more electrical energy. The research findings are published in Electrochimica Acta academic journal (IF: 6,215; Q1).
Scientists synthetize new material for high-performance supercapacitors
Tomsk, Russia | Posted on January 19th, 2021
A supercapacitor is an electrochemical device for storage and release of electric charge. Unlike batteries, they store and release energy several times faster and do not contain lithium.
A supercapacitor is an element with two electrodes separated by an organic or inorganic electrolyte. The electrodes are coated with an electric charge accumulating material. The modern trend in science is to use various materials based on graphene, one of the thinnest and most durable materials known to man. The researchers of TPU and the University of Lille used reduced graphene oxide (rGO), a cheap and available material.
“Despite their potential, supercapacitors are not wide-spread yet. For further development of the technology, it is required to enhance the efficiency of supercapacitors. One of the key challenges here is to increase the energy capacity.
It can be achieved by expanding the surface area of an energy storage material, rGO in this particular case. We found a simple and quite fast method. We used exceptionally organic molecules under mild conditions and did not use expensive and toxic metals,” Pavel Postnikov, Associate Professor of TPU Research School of Chemistry and Applied Biomedical Science and the research supervisor says.
Reduced graphene oxide in a powder form is deposited on electrodes. As a result, the electrode becomes coated with hundreds of nanoscale layers of the substance. The layers tend to agglomerate, in other words, to sinter. To expand the surface area of a material, the interlayer spacing should be increased.
“For this purpose, we modified rGO with organic molecules, which resulted in the interlayer spacing increase. Insignificant differences in interlayer spacing allowed increasing energy capacity of the material by 1.7 times. That is, 1 g of the new material can store 1.7 times more energy in comparison with a pristine reduced graphene oxide,” Elizaveta Sviridova, Junior Research Fellow of TPU Research School of Chemistry and Applied Biomedical Sciences and one of the authors of the article explains.
The reaction proceeded through the formation of active arynes from iodonium salts. They kindle scientists` interest due to their property to form a single layer of new organic groups on material surfaces. The TPU researchers have been developing the chemistry of iodonium salts for many years.
“The modification reaction proceeds under mild conditions by simply mixing the solution of iodonium salt with reduced graphene oxide. If we compare it with other methods of reduced graphene oxide functionalization, we have achieved the highest indicators of material energy capacity increase,” Elizaveta Sviridova says.
###
The research work was conducted with the support of the Russian Science Foundation.
####
For more information, please click here
Contacts:
Alina Borovskaia
7-923-419-5528
@TPUnews_en
Copyright © Tomsk Polytechnic University
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Govt.-Legislation/Regulation/Funding/Policy
Controlling chemical catalysts with sculpted light January 15th, 2021
Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Possible Futures
Scientists’ discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Discoveries
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Announcements
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020
New imaging method views soil carbon at near-atomic scales December 25th, 2020
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Nano Technology
Researchers guide a single ion through a Bose Einstein condensate

Published
6 days agoon
January 20, 2021
Source: https://www.nanowerk.com/nanotechnology-news2/newsid=57061.php
Nano Technology
Storing information with light: photo-ferroelectric materials

Published
6 days agoon
January 20, 2021
Source: https://www.nanowerk.com/nanotechnology-news2/newsid=57060.php
Nano Technology
Do simulations represent the real world at the atomic scale?

Published
6 days agoon
January 20, 2021
Source: https://www.nanowerk.com/nanotechnology-news2/newsid=57058.php

Buying the Bitcoin Dip: MicroStrategy Scoops $10M Worth of BTC Following $7K Daily Crash

Bitcoin Correction Intact While Altcoins Skyrocket: The Crypto Weekly Recap

TA: Ethereum Starts Recovery, Why ETH Could Face Resistance Near $1,250

MicroStrategy CEO claims to have “thousands” of executives interested in Bitcoin

Canadian VR Company Sells $4.2M of Bitcoin Following the Double-Spending FUD

Monero, OMG Network, DigiByte Price Analysis: 23 January

Chainlink Price Analysis: 23 January

Popular analyst prefers altcoins LINK, UNI, others during Bitcoin & Eth’s correction phase

Bitcoin Cash, Synthetix, Dash Price Analysis: 23 January

Will range-bound Bitcoin fuel an altcoin rally?

Why has Bitcoin’s brief recovery not been enough

Bitcoin Cash Analysis: Strong Support Forming Near $400

OIO Holdings Appoints Rudy Lim as CEO of Blockchain Business Subsidiary

Tesla Powerwalls selected for first 100% solar and battery neighborhood in Australia

Clear Aligners Market Size Worth $6.0 Billion By 2027 | CAGR: 23.1%: Grand View Research, Inc.

Virtuoso Acquisition Corp. (VOSOU) Prices Upsized $200M IPO

Why now is the best time to buy Bitcoin, Ethereum

Einstein Healthcare Network Announces August Breach

Stellar Lumens, Cosmos, Zcash Price Analysis: 23 January

Plato had Big Data and AI firmly on his radar
Trending
-
Blockchain1 week ago
The Countdown is on: Bitcoin has 3 Days Before It Reaches Apex of Key Formation
-
Blockchain1 week ago
Litecoin, VeChain, Ethereum Classic Price Analysis: 17 January
-
Blockchain1 week ago
Is Ethereum Undervalued, or Polkadot Overvalued?
-
Blockchain7 days ago
5 Best Bitcoin Alternatives in 2021
-
SPAC Insiders7 days ago
Churchill Capital IV (CCIV) Releases Statement on Lucid Motors Rumor
-
Blockchain1 week ago
Here’s why Bitcoin or altcoins aren’t the best bets
-
Cyber Security5 days ago
Critical Cisco SD-WAN Bugs Allow RCE Attacks
-
Blockchain3 days ago
Buying the Bitcoin Dip: MicroStrategy Scoops $10M Worth of BTC Following $7K Daily Crash
-
Blockchain3 days ago
Bitcoin Correction Intact While Altcoins Skyrocket: The Crypto Weekly Recap
-
Blockchain1 week ago
Bitcoin Worth $140 Billion Lost Says UK Council
-
Blockchain4 days ago
TA: Ethereum Starts Recovery, Why ETH Could Face Resistance Near $1,250
-
Blockchain3 days ago
MicroStrategy CEO claims to have “thousands” of executives interested in Bitcoin