Zephyrnet Logo

Electromagnetic coupling of spins and pseudospins in bilayer graphene

Date:

We present a detailed theoretical study of bilayer-graphene’s electronic properties in the presence of electric and magnetic fields. Using group-theoretical methods, we derive an invariant expansion of the Hamiltonian for electron states near the K point of the Brillouin zone. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the external electric (magnetic) field has a counterpart where the analogous component of the magnetic (electric) field couples to exactly the same combination of quantities. For example, a purely electric spin splitting appears as the magnetoelectric analog of the familiar magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Our findings thus reveal unconventional behavior of spin and pseudospin degrees of freedom in their coupling to external fields. We explain how these counterintuitive couplings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin degree of freedom characterizing the intravalley orbital motion in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We also provide numerical values of prefactors for relevant coupling terms. While our theoretical arguments use bilayer graphene as an example, they are generally valid for any material with similar symmetries. The unusual equivalence of magnetic and electric fields discussed here can provide the basis for designing more versatile device architectures for creating polarizations and manipulating the orientation of spins and pseudospins.

  • Figure
  • Figure
  • Received 4 November 2014
  • Revised 29 April 2015

DOI:https://doi.org/10.1103/PhysRevB.91.205312

©2015 American Physical Society

Source: http://link.aps.org/doi/10.1103/PhysRevB.91.205312

spot_img

Latest Intelligence

spot_img