Zephyrnet Logo

Electrical tuning of optically active interlayer excitons in bilayer MoS2

Date:

  • 1.

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  Google Scholar

  • 2.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    CAS  Article  Google Scholar

  • 3.

    Borghardt, S. et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Phys. Rev. Mater. 1, 054001 (2017).

    Article  Google Scholar

  • 4.

    Hsu, W. T. et al. Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).

    CAS  Article  Google Scholar

  • 5.

    Park, S. et al. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018).

    Article  Google Scholar

  • 6.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS  Article  Google Scholar

  • 7.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Article  Google Scholar

  • 8.

    Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    CAS  Article  Google Scholar

  • 9.

    Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    CAS  Article  Google Scholar

  • 10.

    Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    CAS  Article  Google Scholar

  • 11.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Article  Google Scholar

  • 12.

    Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 11, 4041–4050 (2017).

    CAS  Article  Google Scholar

  • 13.

    Yu, H. Y., Wang, Y., Tong, Q. J., Xu, X. D. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Article  Google Scholar

  • 14.

    Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

    CAS  Article  Google Scholar

  • 15.

    Deilmann, T. & Thygesen, K. S. Interlayer excitons with large optical amplitudes in layered van der Waals materials. Nano Lett. 18, 2984–2989 (2018).

    CAS  Article  Google Scholar

  • 16.

    Wang, Z., Chiu, Y. H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    CAS  Article  Google Scholar

  • 17.

    Gerber, I. C. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 99, 035443 (2019).

    CAS  Article  Google Scholar

  • 18.

    Horng, J. et al. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 97, 241404(R) (2018).

    Article  Google Scholar

  • 19.

    Arora, A. et al. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale 10, 15571–15577 (2018).

    CAS  Article  Google Scholar

  • 20.

    Arora, A. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 8, 639 (2017).

    Article  Google Scholar

  • 21.

    Niehues, I., Blob, A., Stiehm, T., de Vasconcellos, S. M. & Bratschitsch, R. Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale 11, 12788–12792 (2019).

    CAS  Article  Google Scholar

  • 22.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS  Article  Google Scholar

  • 23.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar

  • 24.

    Gong, Z. R. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

    Article  Google Scholar

  • 25.

    Fan, X. F., Singh, D. J. & Zheng, W. T. Valence band splitting on multilayer MoS2: mixing of spin–orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 7, 2175–2181 (2016).

    CAS  Article  Google Scholar

  • 26.

    Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    CAS  Article  Google Scholar

  • 27.

    Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar

  • 28.

    Verzhbitskiy, I., Vella, D., Watanabe, K., Taniguchi, T. & Eda, G. Suppressed out-of-plane polarizability of free excitons in monolayer WSe2. ACS Nano 13, 3218–3224 (2019).

    CAS  Article  Google Scholar

  • 29.

    Liu, G. B., Xiao, D., Yao, Y. G., Xu, X. D. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    CAS  Article  Google Scholar

  • 30.

    Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    CAS  Article  Google Scholar

  • 31.

    Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    CAS  Article  Google Scholar

  • 32.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS  Article  Google Scholar

  • 33.

    Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    CAS  Article  Google Scholar

  • 34.

    Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    CAS  Article  Google Scholar

  • 35.

    Druppel, M. et al. Electronic excitations in transition metal dichalcogenide monolayers from an LDA + GdW approach. Phys. Rev. B 98, 155433 (2018).

    Article  Google Scholar

  • 36.

    Druppel, M., Deilmann, T., Kruger, P. & Rohlfing, M. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 8, 2117 (2017).

    Article  Google Scholar

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.nature.com/articles/s41565-021-00916-1

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?