Zephyrnet Logo

Direct observation of water-mediated single-proton transport between hBN surface defects

Date:

  • 1.

    Kreuer, K. D. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).

  • 2.

    Chen, M. et al. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10, 413–419 (2018).

  • 3.

    Reider, G., Höfer, U. & Heinz, T. Surface diffusion of hydrogen on Si (111)7 × 7. Phys. Rev. Lett. 66, 1994–1997 (1991).

  • 4.

    Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

  • 5.

    Kumagai, T. et al. H-atom relay reactions in real space. Nat. Mater. 11, 167–172 (2012).

  • 6.

    Tocci, G. & Michaelides, A. Solvent-induced proton hopping at a water-oxide interface. J. Phys. Chem. Lett. 5, 474–480 (2014).

  • 7.

    Nagasaka, M., Kondoh, H., Amemiya, K., Ohta, T. & Iwasawa, Y. Proton transfer in a two-dimensional hydrogen-bonding network: water and hydroxyl on a Pt(111) surface. Phys. Rev. Lett. 100, 8–11 (2008).

  • 8.

    Grosjean, B., Bocquet, M. L. & Vuilleumier, R. Versatile electrification of two-dimensional nanomaterials in water. Nat. Commun. 10, 1656 (2019).

  • 9.

    Bränden, M., Sanden, T., Brzezinkski, P. & Widengren, J. Localized proton microcircuits at the biological membrane–water interface. Proc. Natl Acad. Sci. USA 103, 19766–19770 (2006).

  • 10.

    Cherepanov, D. A., Pohl, P., Hagen, V., Antonenko, Y. N. & Springer, A. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl Acad. Sci. USA 108, 14461–14466 (2011).

  • 11.

    Serowy, S. et al. Structural proton diffusion along lipid bilayers. Biophys. J. 84, 1031–1037 (2003).

  • 12.

    Zhang, C. et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl Acad. Sci. USA 109, 9744–9749 (2012).

  • 13.

    Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

  • 14.

    Michaelides, A. & Hu, P. Catalytic water formation on platinum: a first-principles study. J. Am. Chem. Soc. 123, 4235–4242 (2001).

  • 15.

    Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

  • 16.

    Schmidt-Rohr, K. & Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75–83 (2008).

  • 17.

    Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. & McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004).

  • 18.

    Kreuer, K.-D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

  • 19.

    Ling, X., Bonn, M., Domke, K. F. & Parekh, S. H. Correlated interfacial water transport and proton conductivity in perfluorosulfonic acid membranes. Proc. Natl Acad. Sci. USA 116, 8715–8720 (2019).

  • 20.

    Boysen, D. A., Uda, T., Chisholm, C. R. I. & Haile, S. M. High-performance solid acid fuel cells through humidity stabilization. Science 303, 68–70 (2004).

  • 21.

    Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

  • 22.

    Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

  • 23.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

  • 24.

    Zhou, K. G. et al. Electrically controlled water permeation through graphene oxide membranes. Nature 559, 236–240 (2018).

  • 25.

    Feng, J. et al. Imaging of optically active defects with nanometer resolution. Nano Lett. 18, 1739–1744 (2018).

  • 26.

    Comtet, J. et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett. 19, 2516–2523 (2019).

  • 27.

    Freier, E., Wolf, S. & Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl Acad. Sci. USA 108, 11435–11439 (2011).

  • 28.

    Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2. Phys. Rev. Lett. 96, 066107 (2006).

  • 29.

    Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525–529 (2007).

  • 30.

    Léonard, S., Ingrid, S., Frédéric, F., Annick, L. & Julien, B. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 4, 15028 (2017).

  • 31.

    Vogl, T., Campbell, G., Buchler, B. C., Lu, Y. & Lam, P. K. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 5, 2305–2312 (2018).

  • 32.

    Martínez, L. J. et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016).

  • 33.

    Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van De Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

  • 34.

    Wang, Q. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 18, 6898–6905 (2018).

  • 35.

    Agmon, N. Elementary steps in excited-state proton transfer. J. Phys. Chem. A 109, 13–35 (2005).

  • 36.

    Scharnagl, C., Raupp-Kossmann, R. & Fischer, S. F. Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophys. J. 77, 1839–1857 (1999).

  • 37.

    Habuchi, S. et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem. Photobiol. Sci. 5, 567–576 (2006).

  • 38.

    Janssen, K. P. F. et al. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev. 43, 990–1006 (2014).

  • 39.

    Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

  • 40.

    Zou, N. et al. Cooperative communication within and between single nanocatalysts. Nat. Chem. 10, 607–614 (2018).

  • 41.

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

  • 42.

    Bouchaud, J. P., Comtet, A., Georges, A. & Le Doussal, P. Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. 201, 285–341 (1990).

  • 43.

    Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys. 87, 483–530 (2015).

  • 44.

    Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994).

  • 45.

    Halle, B. & Karlström, G. Prototropic charge migration in water. J. Chem. Soc. Faraday Trans. 79, 1047–1073 (1983).

  • 46.

    Sluyters, J. H. & Sluyters-Rehbach, M. The mechanism of the hydrogen ion conduction in liquid light and heavy water derived from the temperature dependence of their limiting conductivities. J. Phys. Chem. B 114, 15582–15589 (2010).

  • 47.

    Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F. & Hell, S. W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl Acad. Sci. USA 115, 6117–6122 (2018).

  • 48.

    Reed, D. A. & Ehrlich, G. Surface diffusion, atomic jump rates and thermodynamics. Surf. Sci. 102, 588–609 (1981).

  • 49.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

  • 50.

    Weichselbaum, E. et al. Origin of proton affinity to membrane/water interfaces. Sci. Rep. 7, 1–8 (2017).

  • 51.

    Kudin, K. N. & Car, R. Why are water-hydrophobic interfaces charged? J. Am. Chem. Soc. 130, 3915–3919 (2008).

  • 52.

    Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

  • 53.

    Dellago, C. & Hummer, G. Kinetics and mechanism of proton transport across membrane nanopores. Phys. Rev. Lett. 97, 1–4 (2006).

  • Source: https://www.nature.com/articles/s41565-020-0695-4

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?