Zephyrnet Logo

Deep Learning vs Machine Learning: How an Emerging Field Influences Traditional Computer Programming

Date:

When two different concepts are greatly intertwined, it can be difficult to separate them as distinct academic topics. That might explain why it’s so difficult to separate deep learning from machine learning as a whole. Considering the current push for both automation as well as instant gratification, a great deal of renewed focus has been heaped on the topic.

Everything from automated manufacturing worfklows to personalized digital medicine could potentially grow to rely on deep learning technology. Defining the exact aspects of this technical discipline that will revolutionize these industries is, however, admittedly much more difficult. Perhaps it’s best to consider deep learning in the context of a greater movement in computer science.

Defining Deep Learning as a Subset of Machine Learning

Machine learning and deep learning are essentially two sides of the same coin. Deep learning techniques are a specific discipline that belong to a much larger field that includes a large variety of trained artificially intelligent agents that can predict the correct response in an equally wide array of situations. What makes deep learning independent of all of these other techniques, however, is the fact that it focuses almost exclusively on teaching agents to accomplish a specific goal by learning the best possible action in a number of virtual environments.

Traditional machine learning algorithms usually teach artificial nodes how to respond to stimuli by rote memorization. This is somewhat similar to human teaching techniques that consist of simple repetition, and therefore might be thought of the computerized equivalent of a student running through times tables until they can recite them. While this is effective in a way, artificially intelligent agents educated in such a manner may not be able to respond to any stimulus outside of the realm of their original design specifications.

That’s why deep learning specialists have developed alternative algorithms that are considered to be somewhat superior to this method, though they are admittedly far more hardware intensive in many ways. Subrountines used by deep learning agents may be based around generative adversarial networks, convolutional neural node structures or a practical form of restricted Boltzmann machine. These stand in sharp contrast to the binary trees and linked lists used by conventional machine learning firmware as well as a majority of modern file systems.

Self-organizing maps have also widely been in deep learning, though their applications in other AI research fields have typically been much less promising. When it comes to defining the deep learning vs machine learning debate, however, it’s highly likely that technicians will be looking more for practical applications than for theoretical academic discussion in the coming months. Suffice it to say that machine learning encompasses everything from the simplest AI to the most sophisticated predictive algorithms while deep learning constitutes a more selective subset of these techniques.

Practical Applications of Deep Learning Technology

Depending on how a particular program is authored, deep learning techniques could be deployed along supervised or semi-supervised neural networks. Theoretically, it’d also be possible to do so via a completely unsupervised node layout, and it’s this technique that has quickly become the most promising. Unsupervised networks may be useful for medical image analysis, since this application often presents unique pieces of graphical information to a computer program that have to be tested against known inputs.

Traditional binary tree or blockchain-based learning systems have struggled to identify the same patterns in dramatically different scenarios, because the information remains hidden in a structure that would have otherwise been designed to present data effectively. It’s essentially a natural form of steganography, and it has confounded computer algorithms in the healthcare industry. However, this new type of unsupervised learning node could virtually educate itself on how to match these patterns even in a data structure that isn’t organized along the normal lines that a computer would expect it to be.

Others have proposed implementing semi-supervised artificially intelligent marketing agents that could eliminate much of the concern over ethics regarding existing deal-closing software. Instead of trying to reach as large a customer base as possible, these tools would calculate the odds of any given individual needing a product at a given time. In order to do so, it would need certain types of information provided by the organization that it works on behalf of, but it would eventually be able to predict all further actions on its own.

While some companies are currently relying on tools that utilize traditional machine learning technology to achieve the same goals, these are often wrought with privacy and ethical concerns. The advent of deep structured learning algorithms have enabled software engineers to come up with new systems that don’t suffer from these drawbacks.

Developing a Private Automated Learning Environment

Conventional machine learning programs often run into serious privacy concerns because of the fact that they need a huge amount of input in order to draw any usable conclusions. Deep learning image recognition software works by processing a smaller subset of inputs, thus ensuring that it doesn’t need as much information to do its job. This is of particular importance for those who are concerned about the possibility of consumer data leaks.

Considering new regulatory stances on many of these issues, it’s also quickly become something that’s become important from a compliance standpoint as well. As toxicology labs begin using bioactivity-focused deep structured learning packages, it’s likely that regulators will express additional concerns in regards to the amount of information needed to perform any given task with this kind of sensitive data. Computer scientists have had to scale back what some have called a veritable fire hose of bytes that tell more of a story than most would be comfortable with.

In a way, these developments hearken back to an earlier time when it was believed that each process in a system should only have the amount of privileges necessary to complete its job. As machine learning engineers embrace this paradigm, it’s highly likely that future developments will be considerably more secure simply because they don’t require the massive amount of data mining necessary to power today’s existing operations.

Image Credit: toptal.io

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://datafloq.com/read/deep-learning-vs-machine-learning-how-emerging-field-influences-traditional-computer-programming/13652

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?